Origin of the Low Magnetic Moment in Fe₂AlTi: An Ab Initio Study

. 2018 Sep 14 ; 11 (9) : . [epub] 20180914

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30223499

Grantová podpora
17-22139S Grantová Agentura České Republiky
CEITEC 2020, LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy

The intermetallic compound Fe 2 AlTi (alternatively Fe 2 TiAl) is an important phase in the ternary Fe-Al-Ti phase diagram. Previous theoretical studies showed a large discrepancy of approximately an order of magnitude between the ab initio computed magnetic moments and the experimentally measured ones. To unravel the source of this discrepancy, we analyze how various mechanisms present in realistic materials such as residual strain effects or deviations from stoichiometry affect magnetism. Since in spin-unconstrained calculations the system always evolves to the spin configuration which represents a local or global minimum in the total energy surface, finite temperature spin effects are not well described. We therefore turn the investigation around and use constrained spin calculations, fixing the global magnetic moment. This approach provides direct insight into local and global energy minima (reflecting metastable and stable spin phases) as well as the curvature of the energy surface, which correlates with the magnetic entropy and thus the magnetic configuration space accessible at finite temperatures. Based on this approach, we show that deviations from stoichiometry have a huge impact on the local magnetic moment and can explain the experimentally observed low magnetic moments.

Zobrazit více v PubMed

Zwicker U., Breme J., Nigge K. Mikrochim. Acta Suppl. 1985;11:333.

Zwicker U. Investigations on the TiAl5Fe2.5 alloy as implant material. Z. Metallkd. 1986;77:714–720.

Jung I.H., Decterov S.A., Pelton A.D. Computer applications of thermodynamic databases to inclusion engineering. ISIJ Int. 2004;44:527–536. doi: 10.2355/isijinternational.44.527. DOI

Gorzel A., Palm M., Sauthoff G. Constitution-based alloy selection for the screening of intermetallic Ti-Al-Fe alloys. Z. Metallkd. 1999;90:64–70.

Palm M. Concepts derived from phase diagram studies for the strengthening of Fe-Al-based alloys. Intermetallics. 2005;13:1286–1295. doi: 10.1016/j.intermet.2004.10.015. DOI

Brady M.P., Smialek J.L., Brindley W.J. Oxidation-Resistant Ti-Al-Fe Alloy for Diffusion Barrier Coatings. No. 5,776,617. US Patent. 1998 Jul 7;

Dew-Hughes D., Kaufman L. Ternary phase diagrams of the manganese-titanium-iron and the aluminum-titanium-iron systems: A comparison of computer calculations with experiment. Calphad. 1979;3:175–203. doi: 10.1016/0364-5916(79)90003-8. DOI

Raghavan V. Al-Fe-Ti (aluminum-iron-titanium) J. Phase Equilib. 1993;14:618–619. doi: 10.1007/BF02669144. DOI

Raghavan V. Al-Fe-Ti (Aluminum-Iron-Titanium) J. Phase Equilib. 2002;23:367–374. doi: 10.1361/105497102770331613. DOI

Krein R., Palm M., Heilmaier M. Characterization of microstructures, mechanical properties, and oxidation behavior of coherent A2+L21 Fe-Al-Ti. J. Mater. Res. 2009;24:3412–3421. doi: 10.1557/jmr.2009.0403. DOI

Capdevila C., Aranda M.M., Rementeria R., Chao J., Urones-Garrote E., Aldazabal J., Miller M.K. Strengthening by intermetallic nanoprecipitation in Fe-Cr-Al-Ti alloy. Acta Mater. 2016;107:27–37. doi: 10.1016/j.actamat.2016.01.039. DOI

Nakata J., Terada Y., Takizawa S., Ohkubo K., Mohri T., Suzuki T. Thermal conductivity in X2YZ heusler type intermetallic compounds. Mater. Trans. JIM. 1996;37:442–447. doi: 10.2320/matertrans1989.37.442. DOI

Kainuma R., Urushiyama K., Ishikawa K., Jia C., Ohnuma I., Ishida K. Ordering and phase separation in bcc aluminides of the Ni-Fe-Al-Ti system. Mater. Sci. Eng. A. 1997;240:235–244. doi: 10.1016/S0921-5093(97)00587-X. DOI

Fomina K.A., Marchenkov V.V., Shreder E.I., Weber H.W. Electrical and optical properties of X2YZ (X = Co, Fe; Y = Cr, Mn, Ti; Z = Ga, Al, Si) Heusler alloys. In: Ustinov V., editor. Solid State Phenomena. Volume 168–169. Russian Academy of Sciences, Institute for Metal Physics; Saint Petersburg, Russia: 2011. p. 545. Trends in Magnetism. DOI

Brzakalik K. Nearest-neighbor configurations of Fe atoms in Fe3−xTixAl ordered alloys. Intermetallics. 2008;16:1053–1060. doi: 10.1016/j.intermet.2008.06.001. DOI

Suzuki R., Kyono T. Thermoelectric properties of Fe2TiAl heusler alloys. J. Alloys Compd. 2004;377:38–42. doi: 10.1016/j.jallcom.2004.01.035. DOI

Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI

Krein R., Friak M., Neugebauer J., Palm M., Heilmaier M. L21-ordered Fe-Al-Ti alloys. Intermetallics. 2010;18:1360–1364. doi: 10.1016/j.intermet.2009.12.036. DOI

Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilib. 1995;16:209–222. doi: 10.1007/BF02667305. DOI

Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI

Michalcova A., Sencekova L., Rolink G., Weisheit A., Pesicka J., Stobik M., Palm M. Laser additive manufacturing of iron aluminides strengthened by ordering, borides or coherent Heusler phase. Mater. Des. 2017;116:481–494. doi: 10.1016/j.matdes.2016.12.046. DOI

Gilleßen M., Dronskowski R. A combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 2009;30:1290–1299. doi: 10.1002/jcc.21152. PubMed DOI

Gilleßen M., Dronskowski R. A combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 2010;31:612–619. doi: 10.1002/jcc.21358. PubMed DOI

Adebambo P.O., Adetunji B.I., Olowofela J.A., Oguntuase J.A., Adebayo G.A. Prediction of metallic and half-metallic structure and elastic properties of Fe2Ti1−xMnxAl Heusler alloys. Phys. B Condens. Matter. 2016;485:103–109. doi: 10.1016/j.physb.2016.01.014. DOI

Xian-Kun L., Cong L., Zhou Z., Xiao-Hua L. First-principles investigation on the structural and elastic properties of cubic-Fe2TiAl under high pressures. Chin. Phys. B. 2013;22

Kourov N.I., Marchenkov V.V., Belozerova K.A., Weber H.W. Specific Features of the Electrical Resistivity of Half-Metallic Ferromagnets Fe2MeAl (Me = Ti, V, Cr, Mn, Fe, Ni) J. Exp. Theor. Phys. 2014;118:426–431. doi: 10.1134/S1063776114020137. DOI

Shreder E., Streltsov S.V., Svyazhin A., Lukoyanov A., Anisimov V. Electronic structure and physical properties of Fe2MAl (M = Ti, V, Cr) Heusler alloys; Proceedings of the Third International Symposium on Magnetism; Moscow, Russia. 26–30 June 2005.

Shreder E., Streltsov S.V., Svyazhin A., Makhnev A., Marchenkov V.V., Lukoyanov A., Weber H.W. Evolution of the electronic structure and physical properties of Fe(2)MeAl (Me = Ti, V, Cr) Heusler alloys. J. Phys. Condens. Matter. 2008;20 doi: 10.1088/0953-8984/20/04/045212. DOI

Buschow K.H.J., van Engen P.G. Magnetic and magneto-optical properties of Heusler alloys based on aluminum and gallium. J. Mag. Mag. Mater. 1981;25:90–96. doi: 10.1016/0304-8853(81)90151-7. DOI

Slebarski A., Goraus J., Deniszczyk J., Skoczen L. Electronic structure, magnetic properties and electrical resistivity of the Fe2V1−xTixAl Heusler alloys: experiment and calculation. J. Phys. Condens. Matter. 2006;18:10319–10334. doi: 10.1088/0953-8984/18/46/002. PubMed DOI

Friák M., Hickel T., Körmann F., Udyansky A., Dick A., von Pezold J., Ma D., Kim O., Counts W.A., Šob M., Gebhardt T., Music D., Schneider J., Raabe D., Neugebauer J. Determining the Elasticity of Materials Employing Quantum-mechanical Approaches: From the Electronic Ground State to the Limits of Materials Stability. Steel Res. Int. 2011;82:86–100. doi: 10.1002/srin.201000264. DOI

Handbook of Chemistry and Physics. CRC Press; Boca Raton, FL, USA: 1928.

Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI

Williams A.R., Moruzzi V.L., Kübler J., Schwarz K. Bull. Am. Phys. Soc. 1984;29:278.

Schwarz K., Mohn P. Itinerant metamagnetism in YCo2. J. Phys. F. 1984;14:L129–L134. doi: 10.1088/0305-4608/14/7/008. DOI

Podgórny M., Thon M., Wagner D. Electronic-structure and thermodynamic properties of Fe-Pt alloys. J. Magn. Magn. Mater. 1992;104:703–704. doi: 10.1016/0304-8853(92)90993-X. DOI

Singh D.J., Klein B.M. Electronic-structure, lattice stability, and superconductivity of CrC. Phys. Rev. B. 1992;46:14969–14974. doi: 10.1103/PhysRevB.46.14969. PubMed DOI

Entel P., Hoffmann E., Mohn P., Schwarz K., Moruzzi V.L. 1st-principles calculations of the instability leading to the invar effect. Phys. Rev. B. 1993;47:8706–8720. doi: 10.1103/PhysRevB.47.8706. PubMed DOI

Wu S.Q., Hou Z.F., Zhu Z.Z. Elastic properties and electronic structures of CdCNi3: A comparative study with MgCNi3. Solid State Sci. 2009;11:251–258. doi: 10.1016/j.solidstatesciences.2008.04.024. DOI

Hsueh H., Crain J., Guo G., Chen H., Lee C., Chang K., Shih H. Magnetism and mechanical stability of α-iron. Phys. Rev. B. 2002;66 doi: 10.1103/PhysRevB.66.052420. DOI

Fecher G.H., Chadov S., Felser C. Theory of the Half-Metallic Heusler Compounds. In: Felser C., Fecher G.H., editors. Spintronics, From Materials to Devices. Springer; Dordrecht/Heidelberg, Germany: New York, NY, USA: London, UK: 2013. pp. 115–166.

Brzakalik K., Frackowiak J. A Mossbauer and structural study of disordered alloys Fe3−xTixAl (0 < x <1) Nukleonika. 2003;48:S13–S16.

Yan X., Grytsiv A., Rogl P., Pomjakushin V., Palm M. The Heusler Phase Ti25(Fe50−xNix)Al25 (0 <= x <= 50); Structure and Constitution. J. Phase Equilib. Diffus. 2008;29:500–508. doi: 10.1007/s11669-008-9389-6. DOI

Momma K., Izumi F. An integrated three-dimensional visualization system VESTA using wxWidgets. Comm. Crystallogr. Comput. IUCr Newslett. 2006;7:106. doi: 10.1103/PhysRevB.88.174103. DOI

Momma K., Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008;41:653–658. doi: 10.1107/S0021889808012016. DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace