Origin of the Low Magnetic Moment in Fe₂AlTi: An Ab Initio Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-22139S
Grantová Agentura České Republiky
CEITEC 2020, LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30223499
PubMed Central
PMC6164650
DOI
10.3390/ma11091732
PII: ma11091732
Knihovny.cz E-zdroje
- Klíčová slova
- Fe2AlTi, Fe2TiAl, Heusler, ab initio, magnetism, off-stoichiometry, stability, strain,
- Publikační typ
- časopisecké články MeSH
The intermetallic compound Fe 2 AlTi (alternatively Fe 2 TiAl) is an important phase in the ternary Fe-Al-Ti phase diagram. Previous theoretical studies showed a large discrepancy of approximately an order of magnitude between the ab initio computed magnetic moments and the experimentally measured ones. To unravel the source of this discrepancy, we analyze how various mechanisms present in realistic materials such as residual strain effects or deviations from stoichiometry affect magnetism. Since in spin-unconstrained calculations the system always evolves to the spin configuration which represents a local or global minimum in the total energy surface, finite temperature spin effects are not well described. We therefore turn the investigation around and use constrained spin calculations, fixing the global magnetic moment. This approach provides direct insight into local and global energy minima (reflecting metastable and stable spin phases) as well as the curvature of the energy surface, which correlates with the magnetic entropy and thus the magnetic configuration space accessible at finite temperatures. Based on this approach, we show that deviations from stoichiometry have a huge impact on the local magnetic moment and can explain the experimentally observed low magnetic moments.
Zobrazit více v PubMed
Zwicker U., Breme J., Nigge K. Mikrochim. Acta Suppl. 1985;11:333.
Zwicker U. Investigations on the TiAl5Fe2.5 alloy as implant material. Z. Metallkd. 1986;77:714–720.
Jung I.H., Decterov S.A., Pelton A.D. Computer applications of thermodynamic databases to inclusion engineering. ISIJ Int. 2004;44:527–536. doi: 10.2355/isijinternational.44.527. DOI
Gorzel A., Palm M., Sauthoff G. Constitution-based alloy selection for the screening of intermetallic Ti-Al-Fe alloys. Z. Metallkd. 1999;90:64–70.
Palm M. Concepts derived from phase diagram studies for the strengthening of Fe-Al-based alloys. Intermetallics. 2005;13:1286–1295. doi: 10.1016/j.intermet.2004.10.015. DOI
Brady M.P., Smialek J.L., Brindley W.J. Oxidation-Resistant Ti-Al-Fe Alloy for Diffusion Barrier Coatings. No. 5,776,617. US Patent. 1998 Jul 7;
Dew-Hughes D., Kaufman L. Ternary phase diagrams of the manganese-titanium-iron and the aluminum-titanium-iron systems: A comparison of computer calculations with experiment. Calphad. 1979;3:175–203. doi: 10.1016/0364-5916(79)90003-8. DOI
Raghavan V. Al-Fe-Ti (aluminum-iron-titanium) J. Phase Equilib. 1993;14:618–619. doi: 10.1007/BF02669144. DOI
Raghavan V. Al-Fe-Ti (Aluminum-Iron-Titanium) J. Phase Equilib. 2002;23:367–374. doi: 10.1361/105497102770331613. DOI
Krein R., Palm M., Heilmaier M. Characterization of microstructures, mechanical properties, and oxidation behavior of coherent A2+L21 Fe-Al-Ti. J. Mater. Res. 2009;24:3412–3421. doi: 10.1557/jmr.2009.0403. DOI
Capdevila C., Aranda M.M., Rementeria R., Chao J., Urones-Garrote E., Aldazabal J., Miller M.K. Strengthening by intermetallic nanoprecipitation in Fe-Cr-Al-Ti alloy. Acta Mater. 2016;107:27–37. doi: 10.1016/j.actamat.2016.01.039. DOI
Nakata J., Terada Y., Takizawa S., Ohkubo K., Mohri T., Suzuki T. Thermal conductivity in X2YZ heusler type intermetallic compounds. Mater. Trans. JIM. 1996;37:442–447. doi: 10.2320/matertrans1989.37.442. DOI
Kainuma R., Urushiyama K., Ishikawa K., Jia C., Ohnuma I., Ishida K. Ordering and phase separation in bcc aluminides of the Ni-Fe-Al-Ti system. Mater. Sci. Eng. A. 1997;240:235–244. doi: 10.1016/S0921-5093(97)00587-X. DOI
Fomina K.A., Marchenkov V.V., Shreder E.I., Weber H.W. Electrical and optical properties of X2YZ (X = Co, Fe; Y = Cr, Mn, Ti; Z = Ga, Al, Si) Heusler alloys. In: Ustinov V., editor. Solid State Phenomena. Volume 168–169. Russian Academy of Sciences, Institute for Metal Physics; Saint Petersburg, Russia: 2011. p. 545. Trends in Magnetism. DOI
Brzakalik K. Nearest-neighbor configurations of Fe atoms in Fe3−xTixAl ordered alloys. Intermetallics. 2008;16:1053–1060. doi: 10.1016/j.intermet.2008.06.001. DOI
Suzuki R., Kyono T. Thermoelectric properties of Fe2TiAl heusler alloys. J. Alloys Compd. 2004;377:38–42. doi: 10.1016/j.jallcom.2004.01.035. DOI
Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI
Krein R., Friak M., Neugebauer J., Palm M., Heilmaier M. L21-ordered Fe-Al-Ti alloys. Intermetallics. 2010;18:1360–1364. doi: 10.1016/j.intermet.2009.12.036. DOI
Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilib. 1995;16:209–222. doi: 10.1007/BF02667305. DOI
Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI
Michalcova A., Sencekova L., Rolink G., Weisheit A., Pesicka J., Stobik M., Palm M. Laser additive manufacturing of iron aluminides strengthened by ordering, borides or coherent Heusler phase. Mater. Des. 2017;116:481–494. doi: 10.1016/j.matdes.2016.12.046. DOI
Gilleßen M., Dronskowski R. A combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 2009;30:1290–1299. doi: 10.1002/jcc.21152. PubMed DOI
Gilleßen M., Dronskowski R. A combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 2010;31:612–619. doi: 10.1002/jcc.21358. PubMed DOI
Adebambo P.O., Adetunji B.I., Olowofela J.A., Oguntuase J.A., Adebayo G.A. Prediction of metallic and half-metallic structure and elastic properties of Fe2Ti1−xMnxAl Heusler alloys. Phys. B Condens. Matter. 2016;485:103–109. doi: 10.1016/j.physb.2016.01.014. DOI
Xian-Kun L., Cong L., Zhou Z., Xiao-Hua L. First-principles investigation on the structural and elastic properties of cubic-Fe2TiAl under high pressures. Chin. Phys. B. 2013;22
Kourov N.I., Marchenkov V.V., Belozerova K.A., Weber H.W. Specific Features of the Electrical Resistivity of Half-Metallic Ferromagnets Fe2MeAl (Me = Ti, V, Cr, Mn, Fe, Ni) J. Exp. Theor. Phys. 2014;118:426–431. doi: 10.1134/S1063776114020137. DOI
Shreder E., Streltsov S.V., Svyazhin A., Lukoyanov A., Anisimov V. Electronic structure and physical properties of Fe2MAl (M = Ti, V, Cr) Heusler alloys; Proceedings of the Third International Symposium on Magnetism; Moscow, Russia. 26–30 June 2005.
Shreder E., Streltsov S.V., Svyazhin A., Makhnev A., Marchenkov V.V., Lukoyanov A., Weber H.W. Evolution of the electronic structure and physical properties of Fe(2)MeAl (Me = Ti, V, Cr) Heusler alloys. J. Phys. Condens. Matter. 2008;20 doi: 10.1088/0953-8984/20/04/045212. DOI
Buschow K.H.J., van Engen P.G. Magnetic and magneto-optical properties of Heusler alloys based on aluminum and gallium. J. Mag. Mag. Mater. 1981;25:90–96. doi: 10.1016/0304-8853(81)90151-7. DOI
Slebarski A., Goraus J., Deniszczyk J., Skoczen L. Electronic structure, magnetic properties and electrical resistivity of the Fe2V1−xTixAl Heusler alloys: experiment and calculation. J. Phys. Condens. Matter. 2006;18:10319–10334. doi: 10.1088/0953-8984/18/46/002. PubMed DOI
Friák M., Hickel T., Körmann F., Udyansky A., Dick A., von Pezold J., Ma D., Kim O., Counts W.A., Šob M., Gebhardt T., Music D., Schneider J., Raabe D., Neugebauer J. Determining the Elasticity of Materials Employing Quantum-mechanical Approaches: From the Electronic Ground State to the Limits of Materials Stability. Steel Res. Int. 2011;82:86–100. doi: 10.1002/srin.201000264. DOI
Handbook of Chemistry and Physics. CRC Press; Boca Raton, FL, USA: 1928.
Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI
Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI
Williams A.R., Moruzzi V.L., Kübler J., Schwarz K. Bull. Am. Phys. Soc. 1984;29:278.
Schwarz K., Mohn P. Itinerant metamagnetism in YCo2. J. Phys. F. 1984;14:L129–L134. doi: 10.1088/0305-4608/14/7/008. DOI
Podgórny M., Thon M., Wagner D. Electronic-structure and thermodynamic properties of Fe-Pt alloys. J. Magn. Magn. Mater. 1992;104:703–704. doi: 10.1016/0304-8853(92)90993-X. DOI
Singh D.J., Klein B.M. Electronic-structure, lattice stability, and superconductivity of CrC. Phys. Rev. B. 1992;46:14969–14974. doi: 10.1103/PhysRevB.46.14969. PubMed DOI
Entel P., Hoffmann E., Mohn P., Schwarz K., Moruzzi V.L. 1st-principles calculations of the instability leading to the invar effect. Phys. Rev. B. 1993;47:8706–8720. doi: 10.1103/PhysRevB.47.8706. PubMed DOI
Wu S.Q., Hou Z.F., Zhu Z.Z. Elastic properties and electronic structures of CdCNi3: A comparative study with MgCNi3. Solid State Sci. 2009;11:251–258. doi: 10.1016/j.solidstatesciences.2008.04.024. DOI
Hsueh H., Crain J., Guo G., Chen H., Lee C., Chang K., Shih H. Magnetism and mechanical stability of α-iron. Phys. Rev. B. 2002;66 doi: 10.1103/PhysRevB.66.052420. DOI
Fecher G.H., Chadov S., Felser C. Theory of the Half-Metallic Heusler Compounds. In: Felser C., Fecher G.H., editors. Spintronics, From Materials to Devices. Springer; Dordrecht/Heidelberg, Germany: New York, NY, USA: London, UK: 2013. pp. 115–166.
Brzakalik K., Frackowiak J. A Mossbauer and structural study of disordered alloys Fe3−xTixAl (0 < x <1) Nukleonika. 2003;48:S13–S16.
Yan X., Grytsiv A., Rogl P., Pomjakushin V., Palm M. The Heusler Phase Ti25(Fe50−xNix)Al25 (0 <= x <= 50); Structure and Constitution. J. Phase Equilib. Diffus. 2008;29:500–508. doi: 10.1007/s11669-008-9389-6. DOI
Momma K., Izumi F. An integrated three-dimensional visualization system VESTA using wxWidgets. Comm. Crystallogr. Comput. IUCr Newslett. 2006;7:106. doi: 10.1103/PhysRevB.88.174103. DOI
Momma K., Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008;41:653–658. doi: 10.1107/S0021889808012016. DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
The Effect of Hydrogen on the Stress-Strain Response in Fe3Al: An ab initio Molecular-Dynamics Study
Impact of Antiphase Boundaries on Structural, Magnetic and Vibrational Properties of Fe3Al
An Ab Initio Study of Magnetism in Disordered Fe-Al Alloys with Thermal Antiphase Boundaries
A Quantum-Mechanical Study of Clean and Cr-Segregated Antiphase Boundaries in Fe3Al