An Ab Initio Study of Magnetism in Disordered Fe-Al Alloys with Thermal Antiphase Boundaries

. 2019 Dec 23 ; 10 (1) : . [epub] 20191223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31878105

Grantová podpora
17-22139S Grantová Agentura České Republiky

We have performed a quantum-mechanical study of a B2 phase of Fe 70 Al 30 alloy with and without antiphase boundaries (APBs) with the {001} crystallographic orientation of APB interfaces. We used a supercell approach with the atoms distributed according to the special quasi-random structure (SQS) concept. Our study was motivated by experimental findings by Murakami et al. (Nature Comm. 5 (2014) 4133) who reported significantly higher magnetic flux density from A2-phase interlayers at the thermally-induced APBs in Fe 70 Al 30 and suggested that the ferromagnetism is stabilized by the disorder in the A2 phase. Our computational study of sharp APBs (without any A2-phase interlayer) indicates that they have moderate APB energies (≈0.1 J/m 2 ) and cannot explain the experimentally detected increase in the ferromagnetism because they often induce a ferro-to-ferrimagnetic transition. When studying thermal APBs, we introduce a few atomic layers of A2 phase of Fe 70 Al 30 into the interface of sharp APBs. The averaged computed magnetic moment of Fe atoms in the whole B2/A2 nanocomposite is then increased by 11.5% w.r.t. the B2 phase. The A2 phase itself (treated separately as a bulk) has the total magnetic moment even higher, by 17.5%, and this increase also applies if the A2 phase at APBs is sufficiently thick (the experimental value is 2-3 nm). We link the changes in the magnetism to the facts that (i) the Al atoms in the first nearest neighbor (1NN) shell of Fe atoms nonlinearly reduce their magnetic moments and (ii) there are on average less Al atoms in the 1NN shell of Fe atoms in the A2 phase. These effects synergically combine with the influence of APBs which provide local atomic configurations not existing in an APB-free bulk. The identified mechanism of increasing the magnetic properties by introducing APBs with disordered phases can be used as a designing principle when developing new magnetic materials.

Zobrazit více v PubMed

Sauthoff G. Intermetallics. VCH Verlagsgesellschaft; Weinheim, Germany: 1995.

Liu C.T., Stringer J., Mundy J.N., Horton L.L., Angelini P. Ordered intermetallic alloys: An assessment. Intermetallics. 1997;5:579–596. doi: 10.1016/S0966-9795(97)00045-9. DOI

Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI

Liu C.T., Lee E.H., McKamey C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. Mater. 1989;23:875–880. doi: 10.1016/0036-9748(89)90263-9. DOI

Lynch R.J., Heldt L.A., Milligan W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall. Mater. 1991;25:2147–2151. doi: 10.1016/0956-716X(91)90290-H. DOI

Liu C.T., McKamey C.G., Lee E.H. Environmental-effects on room-temperature ductility and fracture in Fe3Al. Scr. Metall. Mater. 1990;24:385–389. doi: 10.1016/0956-716X(90)90275-L. DOI

Lynch R.J., Gee K.A., Heldt L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall. Mater. 1994;30:945–950. doi: 10.1016/0956-716X(94)90420-0. DOI

Zamanzade M., Barnoush A., Motz C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI

Kattner U., Burton B. Al-Fe (Aluminium-Iron) In: Okamoto H., editor. Phase Diagrams of Binary Iron Alloys. ASM International; Materials Park, OH, USA: 1993. pp. 12–28.

Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilibria. 1995;16:209–222. doi: 10.1007/BF02667305. DOI

Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI

Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI

Dobes F., Vodickova V., Vesely J., Kratochvil P. The effect of carbon additions on the creep resistance of Fe-25Al-5Zr alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016;47A:6070–6076. doi: 10.1007/s11661-016-3770-6. DOI

Vernieres J., Benelmekki M., Kim J.H., Grammatikopoulos P., Bobo J.F., Diaz R.E., Sowwan M. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties. APL Mater. 2014;2:116105. doi: 10.1063/1.4901345. DOI

Jirásková Y., Pizúrová N., Titov A., Janičkovič D., Friák M. Phase separation in Fe-Ti-Al alloy—Structural, magnetic, and Mössbauer study. J. Magn. Magn. Mater. 2018;468:91–99. doi: 10.1016/j.jmmm.2018.07.065. DOI

Dobeš F., Dymáček P., Friák M. Force-to-Stress Conversion Methods in Small Punch Testing Exemplified by Creep Results of Fe-Al Alloy with Chromium and Cerium Additions. IOP Conf. Ser. Mater. Sci. Eng. 2018;461:012017. doi: 10.1088/1757-899X/461/1/012017. DOI

Dobeš F., Dymáček P., Friák M. Small punch creep of Fe-Al-Cr alloy with Ce addition and its relation to uniaxial creep tests. Kovové Mater. Met. Mater. 2018;56:205. doi: 10.4149/km_2018_4_205. DOI

Dymáček P., Dobeš F., Jirásková Y., Pizúrová N., Friák M. Tensile, creep and fracture testing of prospective Fe-Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. 2019;99:18–26. doi: 10.1016/j.tafmec.2018.11.005. DOI

Dobeš F., Dymáček P., Friák M. The Influence of Niobium Additions on Creep Resistance of Fe-27 at. % Al Alloys. Metals. 2019;9:739. doi: 10.3390/met9070739. DOI

Watson R.E., Weinert M. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B. 1998;58:5981–5988. doi: 10.1103/PhysRevB.58.5981. DOI

Gonzales-Ormeno P., Petrilli H., Schon C. Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad. 2002;26:573–582. doi: 10.1016/S0364-5916(02)80009-8. DOI

Friák M., Neugebauer J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics. 2010;18:1316–1321. doi: 10.1016/j.intermet.2010.03.014. DOI

Amara H., Fu C.C., Soisson F., Maugis P. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Phys. Rev. B. 2010;81:174101. doi: 10.1103/PhysRevB.81.174101. DOI

Liu S., Duan S., Ma B. First-principles calculation of vibrational entropy for Fe-Al compounds. Phys. Rev. B. 1998;58:9705–9709.

Kulikov N.I., Postnikov A.V., Borstel G., Braun J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B. 1999;59:6824–6833. doi: 10.1103/PhysRevB.59.6824. DOI

Fähnle M., Drautz R., Lechermann F., Singer R., Diaz-Ortiz A., Dosch H. Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Phys. Status Solidi B Basic Solid State Phys. 2005;242:1159–1173. doi: 10.1002/pssb.200440010. DOI

Friák M., Deges J., Krein R., Frommeyer G., Neugebauer J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics. 2010;18:1310. doi: 10.1016/j.intermet.2010.02.025. DOI

Kirklin S., Saal J.E., Hegde V.I., Wolverton C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 2016;102:125–135. doi: 10.1016/j.actamat.2015.09.016. DOI

Airiskallio E., Nurmi E., Heinonen M.H., Vayrynen I.J., Kokko K., Ropo M., Punkkinen M.P.J., Pitkanen H., Alatalo M., Kollar J., et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010;52:3394–3404. doi: 10.1016/j.corsci.2010.06.019. DOI

Medvedeva N.I., Park M.S., Van Aken D.C., Medvedeva J.E. First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J. Alloy. Compd. 2014;582:475–482. doi: 10.1016/j.jallcom.2013.08.089. DOI

Čížek J., Lukáč F., Procházka I., Kužel R., Jirásková Y., Janičkovič D., Anwand W., Brauer G. Characterization of quenched-in vacancies in Fe-Al alloys. Phys. B. 2012;407:2659–2664. doi: 10.1016/j.physb.2011.12.122. DOI

Ipser H., Semenova O., Krachler R. Intermetallic phases with D0(3)-structure: A statistical-thermodynamic model. J. Alloy. Compd. 2002;338:20–25. doi: 10.1016/S0925-8388(02)00177-9. DOI

Lechermann F., Welsch F., Elsässer C., Ederer C., Fähnle M., Sanchez J., Meyer B. Density-functional study of Fe3Al: LSDA versus GGA. Phys. Rev. B. 2002;65:132104. doi: 10.1103/PhysRevB.65.132104. DOI

Connetable D., Maugis P. First, principle calculations of the kappa-Fe3AlC perovskite and iron-aluminium intermetallics. Intermetallics. 2008;16:345–352. doi: 10.1016/j.intermet.2007.09.011. DOI

Lechermann F., Fähnle M., Meyer B., Elsässer C. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study. Phys. Rev. B. 2004;69:165116. doi: 10.1103/PhysRevB.69.165116. DOI

Kellou A., Grosdidier T., Raulot J.M., Aourag H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi B Basic Solid State Phys. 2008;245:750–755. doi: 10.1002/pssb.200743301. DOI

Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and brittleness of interfaces in Fe-Al superalloy nanocomposites under multiaxial loading: An ab initio and atomistic study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC

Friák M., Slávik A., Miháliková I., Holec D., Všianská M., Šob M., Palm M., Neugebauer J. Origin of the low magnetic moment in Fe2AlTi: An Ab initio study. Materials. 2018;11:1732. doi: 10.3390/ma11091732. PubMed DOI PMC

Miháliková I., Friák M., Jirásková Y., Holec D., Koutná N., Šob M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. Nanomaterials. 2018;8:1059. doi: 10.3390/nano8121059. PubMed DOI PMC

Friák M., Holec D., Šob M. Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies. Nanomaterials. 2018;8:1057. doi: 10.3390/nano8121057. PubMed DOI PMC

Miháliková I., Friák M., Koutná N., Holec D., Šob M. An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases. Materials. 2019;12:1430. doi: 10.3390/ma12091430. PubMed DOI PMC

Marcinkowski M., Brown N. Theory and direct observation of dislocations in the Fe3Al superlattices. Acta Metall. 1961;9:764–786. doi: 10.1016/0001-6160(61)90107-9. DOI

Marcinkowski M.J., Brown N. Direct Observation of Antiphase Boundaries in the Fe3Al Superlattice. J. Appl. Phys. 1962;33:537–552. doi: 10.1063/1.1702463. DOI

McKamey C.G., Horton J.A., Liu C.T. Effect of chromium on properties of Fe3Al. J. Mater. Res. 1989;4:1156–1163. doi: 10.1557/JMR.1989.1156. DOI

Morris D., Dadras M., Morris M. The influence of Cr addition on the ordered microstructure and deformation and fracture-behavior of a Fe-28-%-Al intermetallic. Acta Metall. Mater. 1993;41:97–111. doi: 10.1016/0956-7151(93)90342-P. DOI

Kral F., Schwander P., Kostorz G. Superdislocations and antiphase boundary energies in deformed Fe3Al single crystals with chromium. Acta Mater. 1997;45:675–682. doi: 10.1016/S1359-6454(96)00181-4. DOI

Allen S., Cahn J. Microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 1979;27:1085–1095. doi: 10.1016/0001-6160(79)90196-2. DOI

Wang K., Wang Y., Cheng Y. The Formation and Dynamic Evolution of Antiphase Domain Boundary in FeAl Alloy: Computational Simulation in Atomic Scale. Mater. Res. Ibero Am. J. Mater. 2018;21 doi: 10.1590/1980-5373-mr-2017-1048. DOI

Balagurov A.M., Bobrikov I.A., Sumnikov V.S., Golovin I.S. Antiphase domains or dispersed clusters? Neutron diffraction study of coherent atomic ordering in Fe3Al-type alloys. Acta Mater. 2018;153:45–52. doi: 10.1016/j.actamat.2018.04.015. DOI

Murakami Y., Niitsu K., Tanigaki T., Kainuma R., Park H.S., Shindo D. Magnetization amplified by structural disorder within nanometre-scale interface region. Nat. Commun. 2014;5:4133. doi: 10.1038/ncomms5133. PubMed DOI PMC

Oguma R., Matsumura S., Eguchi T. Kinetics of B2-and D03 type ordering and formation of domain structures in Fe-Al alloys. J. Phys. Condens. Matter. 2008;20:275225. doi: 10.1088/0953-8984/20/27/275225. PubMed DOI

Friák M., Všianská M., Šob M. A Quantum–Mechanical Study of Clean and Cr–Segregated Antiphase Boundaries in Fe3Al. Materials. 2019;12:3954. doi: 10.3390/ma12233954. PubMed DOI PMC

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI

Zunger A., Wei S., Ferreira L., Bernard J. Special quasirandom structures. Phys. Rev. Lett. 1990;65:353–356. doi: 10.1103/PhysRevLett.65.353. PubMed DOI

Oganov A.R., Glass C.W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006;124:244704. doi: 10.1063/1.2210932. PubMed DOI

Lyakhov A.O., Oganov A.R., Stokes H.T., Zhu Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 2013;184:1172–1182. doi: 10.1016/j.cpc.2012.12.009. DOI

Oganov A.R., Lyakhov A.O., Valle M. How Evolutionary Crystal Structure Prediction Works—In addition, Why. Acc. Chem. Res. 2011;44:227–237. doi: 10.1021/ar1001318. PubMed DOI

Sundman B., Ohnuma I., Dupin N., Kattner U.R., Fries S.G. An assessment of the entire Al–Fe system including D03 ordering. Acta Mater. 2009;57:2896–2908. doi: 10.1016/j.actamat.2009.02.046. DOI

Miracle D., Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI

Hillert M. Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis. 2nd ed. Cambridge University Press; Cambridge, UK: 2008.

Stein F., Palm M. Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis. Int. J. Mater. Res. 2007;98:580–588. doi: 10.3139/146.101512. DOI

Friák M., Buršíková V., Pizúrová N., Pavlů J., Jirásková Y., Homola V., Miháliková I., Slávik A., Holec D., Všianská M., et al. Elasticity of Phases in Fe-Al-Ti Superalloys: Impact of Atomic Order and Anti-Phase Boundaries. Crystals. 2019;9:299. doi: 10.3390/cryst9060299. DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Impact of Antiphase Boundaries on Structural, Magnetic and Vibrational Properties of Fe3Al

. 2020 Oct 30 ; 13 (21) : . [epub] 20201030

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...