An Ab Initio Study of Magnetism in Disordered Fe-Al Alloys with Thermal Antiphase Boundaries
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-22139S
Grantová Agentura České Republiky
PubMed
31878105
PubMed Central
PMC7022334
DOI
10.3390/nano10010044
PII: nano10010044
Knihovny.cz E-zdroje
- Klíčová slova
- Fe-Al, ab initio, antiphase boundaries, disorder, magnetism, stability,
- Publikační typ
- časopisecké články MeSH
We have performed a quantum-mechanical study of a B2 phase of Fe 70 Al 30 alloy with and without antiphase boundaries (APBs) with the {001} crystallographic orientation of APB interfaces. We used a supercell approach with the atoms distributed according to the special quasi-random structure (SQS) concept. Our study was motivated by experimental findings by Murakami et al. (Nature Comm. 5 (2014) 4133) who reported significantly higher magnetic flux density from A2-phase interlayers at the thermally-induced APBs in Fe 70 Al 30 and suggested that the ferromagnetism is stabilized by the disorder in the A2 phase. Our computational study of sharp APBs (without any A2-phase interlayer) indicates that they have moderate APB energies (≈0.1 J/m 2 ) and cannot explain the experimentally detected increase in the ferromagnetism because they often induce a ferro-to-ferrimagnetic transition. When studying thermal APBs, we introduce a few atomic layers of A2 phase of Fe 70 Al 30 into the interface of sharp APBs. The averaged computed magnetic moment of Fe atoms in the whole B2/A2 nanocomposite is then increased by 11.5% w.r.t. the B2 phase. The A2 phase itself (treated separately as a bulk) has the total magnetic moment even higher, by 17.5%, and this increase also applies if the A2 phase at APBs is sufficiently thick (the experimental value is 2-3 nm). We link the changes in the magnetism to the facts that (i) the Al atoms in the first nearest neighbor (1NN) shell of Fe atoms nonlinearly reduce their magnetic moments and (ii) there are on average less Al atoms in the 1NN shell of Fe atoms in the A2 phase. These effects synergically combine with the influence of APBs which provide local atomic configurations not existing in an APB-free bulk. The identified mechanism of increasing the magnetic properties by introducing APBs with disordered phases can be used as a designing principle when developing new magnetic materials.
Zobrazit více v PubMed
Sauthoff G. Intermetallics. VCH Verlagsgesellschaft; Weinheim, Germany: 1995.
Liu C.T., Stringer J., Mundy J.N., Horton L.L., Angelini P. Ordered intermetallic alloys: An assessment. Intermetallics. 1997;5:579–596. doi: 10.1016/S0966-9795(97)00045-9. DOI
Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI
Liu C.T., Lee E.H., McKamey C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. Mater. 1989;23:875–880. doi: 10.1016/0036-9748(89)90263-9. DOI
Lynch R.J., Heldt L.A., Milligan W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall. Mater. 1991;25:2147–2151. doi: 10.1016/0956-716X(91)90290-H. DOI
Liu C.T., McKamey C.G., Lee E.H. Environmental-effects on room-temperature ductility and fracture in Fe3Al. Scr. Metall. Mater. 1990;24:385–389. doi: 10.1016/0956-716X(90)90275-L. DOI
Lynch R.J., Gee K.A., Heldt L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall. Mater. 1994;30:945–950. doi: 10.1016/0956-716X(94)90420-0. DOI
Zamanzade M., Barnoush A., Motz C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI
Kattner U., Burton B. Al-Fe (Aluminium-Iron) In: Okamoto H., editor. Phase Diagrams of Binary Iron Alloys. ASM International; Materials Park, OH, USA: 1993. pp. 12–28.
Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilibria. 1995;16:209–222. doi: 10.1007/BF02667305. DOI
Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI
Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI
Dobes F., Vodickova V., Vesely J., Kratochvil P. The effect of carbon additions on the creep resistance of Fe-25Al-5Zr alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016;47A:6070–6076. doi: 10.1007/s11661-016-3770-6. DOI
Vernieres J., Benelmekki M., Kim J.H., Grammatikopoulos P., Bobo J.F., Diaz R.E., Sowwan M. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties. APL Mater. 2014;2:116105. doi: 10.1063/1.4901345. DOI
Jirásková Y., Pizúrová N., Titov A., Janičkovič D., Friák M. Phase separation in Fe-Ti-Al alloy—Structural, magnetic, and Mössbauer study. J. Magn. Magn. Mater. 2018;468:91–99. doi: 10.1016/j.jmmm.2018.07.065. DOI
Dobeš F., Dymáček P., Friák M. Force-to-Stress Conversion Methods in Small Punch Testing Exemplified by Creep Results of Fe-Al Alloy with Chromium and Cerium Additions. IOP Conf. Ser. Mater. Sci. Eng. 2018;461:012017. doi: 10.1088/1757-899X/461/1/012017. DOI
Dobeš F., Dymáček P., Friák M. Small punch creep of Fe-Al-Cr alloy with Ce addition and its relation to uniaxial creep tests. Kovové Mater. Met. Mater. 2018;56:205. doi: 10.4149/km_2018_4_205. DOI
Dymáček P., Dobeš F., Jirásková Y., Pizúrová N., Friák M. Tensile, creep and fracture testing of prospective Fe-Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. 2019;99:18–26. doi: 10.1016/j.tafmec.2018.11.005. DOI
Dobeš F., Dymáček P., Friák M. The Influence of Niobium Additions on Creep Resistance of Fe-27 at. % Al Alloys. Metals. 2019;9:739. doi: 10.3390/met9070739. DOI
Watson R.E., Weinert M. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B. 1998;58:5981–5988. doi: 10.1103/PhysRevB.58.5981. DOI
Gonzales-Ormeno P., Petrilli H., Schon C. Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad. 2002;26:573–582. doi: 10.1016/S0364-5916(02)80009-8. DOI
Friák M., Neugebauer J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics. 2010;18:1316–1321. doi: 10.1016/j.intermet.2010.03.014. DOI
Amara H., Fu C.C., Soisson F., Maugis P. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Phys. Rev. B. 2010;81:174101. doi: 10.1103/PhysRevB.81.174101. DOI
Liu S., Duan S., Ma B. First-principles calculation of vibrational entropy for Fe-Al compounds. Phys. Rev. B. 1998;58:9705–9709.
Kulikov N.I., Postnikov A.V., Borstel G., Braun J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B. 1999;59:6824–6833. doi: 10.1103/PhysRevB.59.6824. DOI
Fähnle M., Drautz R., Lechermann F., Singer R., Diaz-Ortiz A., Dosch H. Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Phys. Status Solidi B Basic Solid State Phys. 2005;242:1159–1173. doi: 10.1002/pssb.200440010. DOI
Friák M., Deges J., Krein R., Frommeyer G., Neugebauer J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics. 2010;18:1310. doi: 10.1016/j.intermet.2010.02.025. DOI
Kirklin S., Saal J.E., Hegde V.I., Wolverton C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 2016;102:125–135. doi: 10.1016/j.actamat.2015.09.016. DOI
Airiskallio E., Nurmi E., Heinonen M.H., Vayrynen I.J., Kokko K., Ropo M., Punkkinen M.P.J., Pitkanen H., Alatalo M., Kollar J., et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010;52:3394–3404. doi: 10.1016/j.corsci.2010.06.019. DOI
Medvedeva N.I., Park M.S., Van Aken D.C., Medvedeva J.E. First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J. Alloy. Compd. 2014;582:475–482. doi: 10.1016/j.jallcom.2013.08.089. DOI
Čížek J., Lukáč F., Procházka I., Kužel R., Jirásková Y., Janičkovič D., Anwand W., Brauer G. Characterization of quenched-in vacancies in Fe-Al alloys. Phys. B. 2012;407:2659–2664. doi: 10.1016/j.physb.2011.12.122. DOI
Ipser H., Semenova O., Krachler R. Intermetallic phases with D0(3)-structure: A statistical-thermodynamic model. J. Alloy. Compd. 2002;338:20–25. doi: 10.1016/S0925-8388(02)00177-9. DOI
Lechermann F., Welsch F., Elsässer C., Ederer C., Fähnle M., Sanchez J., Meyer B. Density-functional study of Fe3Al: LSDA versus GGA. Phys. Rev. B. 2002;65:132104. doi: 10.1103/PhysRevB.65.132104. DOI
Connetable D., Maugis P. First, principle calculations of the kappa-Fe3AlC perovskite and iron-aluminium intermetallics. Intermetallics. 2008;16:345–352. doi: 10.1016/j.intermet.2007.09.011. DOI
Lechermann F., Fähnle M., Meyer B., Elsässer C. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study. Phys. Rev. B. 2004;69:165116. doi: 10.1103/PhysRevB.69.165116. DOI
Kellou A., Grosdidier T., Raulot J.M., Aourag H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi B Basic Solid State Phys. 2008;245:750–755. doi: 10.1002/pssb.200743301. DOI
Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and brittleness of interfaces in Fe-Al superalloy nanocomposites under multiaxial loading: An ab initio and atomistic study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC
Friák M., Slávik A., Miháliková I., Holec D., Všianská M., Šob M., Palm M., Neugebauer J. Origin of the low magnetic moment in Fe2AlTi: An Ab initio study. Materials. 2018;11:1732. doi: 10.3390/ma11091732. PubMed DOI PMC
Miháliková I., Friák M., Jirásková Y., Holec D., Koutná N., Šob M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. Nanomaterials. 2018;8:1059. doi: 10.3390/nano8121059. PubMed DOI PMC
Friák M., Holec D., Šob M. Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies. Nanomaterials. 2018;8:1057. doi: 10.3390/nano8121057. PubMed DOI PMC
Miháliková I., Friák M., Koutná N., Holec D., Šob M. An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases. Materials. 2019;12:1430. doi: 10.3390/ma12091430. PubMed DOI PMC
Marcinkowski M., Brown N. Theory and direct observation of dislocations in the Fe3Al superlattices. Acta Metall. 1961;9:764–786. doi: 10.1016/0001-6160(61)90107-9. DOI
Marcinkowski M.J., Brown N. Direct Observation of Antiphase Boundaries in the Fe3Al Superlattice. J. Appl. Phys. 1962;33:537–552. doi: 10.1063/1.1702463. DOI
McKamey C.G., Horton J.A., Liu C.T. Effect of chromium on properties of Fe3Al. J. Mater. Res. 1989;4:1156–1163. doi: 10.1557/JMR.1989.1156. DOI
Morris D., Dadras M., Morris M. The influence of Cr addition on the ordered microstructure and deformation and fracture-behavior of a Fe-28-%-Al intermetallic. Acta Metall. Mater. 1993;41:97–111. doi: 10.1016/0956-7151(93)90342-P. DOI
Kral F., Schwander P., Kostorz G. Superdislocations and antiphase boundary energies in deformed Fe3Al single crystals with chromium. Acta Mater. 1997;45:675–682. doi: 10.1016/S1359-6454(96)00181-4. DOI
Allen S., Cahn J. Microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 1979;27:1085–1095. doi: 10.1016/0001-6160(79)90196-2. DOI
Wang K., Wang Y., Cheng Y. The Formation and Dynamic Evolution of Antiphase Domain Boundary in FeAl Alloy: Computational Simulation in Atomic Scale. Mater. Res. Ibero Am. J. Mater. 2018;21 doi: 10.1590/1980-5373-mr-2017-1048. DOI
Balagurov A.M., Bobrikov I.A., Sumnikov V.S., Golovin I.S. Antiphase domains or dispersed clusters? Neutron diffraction study of coherent atomic ordering in Fe3Al-type alloys. Acta Mater. 2018;153:45–52. doi: 10.1016/j.actamat.2018.04.015. DOI
Murakami Y., Niitsu K., Tanigaki T., Kainuma R., Park H.S., Shindo D. Magnetization amplified by structural disorder within nanometre-scale interface region. Nat. Commun. 2014;5:4133. doi: 10.1038/ncomms5133. PubMed DOI PMC
Oguma R., Matsumura S., Eguchi T. Kinetics of B2-and D03 type ordering and formation of domain structures in Fe-Al alloys. J. Phys. Condens. Matter. 2008;20:275225. doi: 10.1088/0953-8984/20/27/275225. PubMed DOI
Friák M., Všianská M., Šob M. A Quantum–Mechanical Study of Clean and Cr–Segregated Antiphase Boundaries in Fe3Al. Materials. 2019;12:3954. doi: 10.3390/ma12233954. PubMed DOI PMC
Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI
Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI
Zunger A., Wei S., Ferreira L., Bernard J. Special quasirandom structures. Phys. Rev. Lett. 1990;65:353–356. doi: 10.1103/PhysRevLett.65.353. PubMed DOI
Oganov A.R., Glass C.W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006;124:244704. doi: 10.1063/1.2210932. PubMed DOI
Lyakhov A.O., Oganov A.R., Stokes H.T., Zhu Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 2013;184:1172–1182. doi: 10.1016/j.cpc.2012.12.009. DOI
Oganov A.R., Lyakhov A.O., Valle M. How Evolutionary Crystal Structure Prediction Works—In addition, Why. Acc. Chem. Res. 2011;44:227–237. doi: 10.1021/ar1001318. PubMed DOI
Sundman B., Ohnuma I., Dupin N., Kattner U.R., Fries S.G. An assessment of the entire Al–Fe system including D03 ordering. Acta Mater. 2009;57:2896–2908. doi: 10.1016/j.actamat.2009.02.046. DOI
Miracle D., Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI
Hillert M. Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis. 2nd ed. Cambridge University Press; Cambridge, UK: 2008.
Stein F., Palm M. Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis. Int. J. Mater. Res. 2007;98:580–588. doi: 10.3139/146.101512. DOI
Friák M., Buršíková V., Pizúrová N., Pavlů J., Jirásková Y., Homola V., Miháliková I., Slávik A., Holec D., Všianská M., et al. Elasticity of Phases in Fe-Al-Ti Superalloys: Impact of Atomic Order and Anti-Phase Boundaries. Crystals. 2019;9:299. doi: 10.3390/cryst9060299. DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
Impact of Antiphase Boundaries on Structural, Magnetic and Vibrational Properties of Fe3Al