• This record comes from PubMed

An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases

. 2019 May 02 ; 12 (9) : . [epub] 20190502

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
17-22139S Grantová Agentura České Republiky
CEITEC 2020, LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy

We have performed quantum-mechanical calculations to examine the impact of disorder on thermodynamic, structural and electronic (magnetic) properties of Fe-Al systems with vacancies. A series of supercells was used and their properties were computed employing density-functional theory (DFT) as implemented in the VASP package. Our case study is primarily aimed at a disordered solid solution Fe 81.25 Al 18.75 but we have compared our results also with those obtained for the ordered Fe 3 Al intermetallic compound for which experimental data exist in literature. Both phases are found in Fe-Al-based superalloys. The Fe-18.75at.%Al solid solution was simulated using special quasirandom structures (SQS) in three different disordered states with a different distribution of Al atoms. In particular, we have considered a general disordered case (an A2-like variant), the case without the first nearest neighbor Al-Al pairs (a B2-like distribution of atoms) and also the case without both the first and second nearest neighbor Al-Al pairs (the D0 3 -like variant, in fact, an Fe-rich Fe 3 Al phase). The vacancy formation energies as well as the volumes of (fully relaxed) supercells with vacancies showed a large scatter for the disordered systems. The vacancy formation energies decrease with increasing concentration of Al atoms in the first coordination shell around the vacancy (an anti-correlation) for all disordered cases studied. The computed volumes of vacancies were found significantly lower (by 25-60%) when compared with the equilibrium volume of the missing atoms in their elemental states. Lastly, we have analyzed interactions between the vacancies and the Fe atoms and evaluated vacancy-induced changes in local magnetic moments of Fe atoms.

See more in PubMed

Čížek J., Lukáč F., Melikhova O., Procházka I., Kužel R. Thermal vacancies in Fe3Al studied by positron annihilation. Acta Mater. 2011;59:4068–4078. doi: 10.1016/j.actamat.2011.03.031. DOI

Čížek J., Lukáč F., Procházka I., Kužel R., Jirásková Y., Janičkovič D., Anwand W., Brauer G. Characterization of quenched-in vacancies in Fe–Al alloys. Phys. B Condens. Matter. 2012;407:2659–2664. doi: 10.1016/j.physb.2011.12.122. DOI

Čížek J. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review. J. Mater. Sci. Technol. 2018;34:577–598. doi: 10.1016/j.jmst.2017.11.050. DOI

James P., Eriksson O., Johansson B., Abrikosov I.A. Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu. Phys. Rev. B. 1999;59:419–430. doi: 10.1103/PhysRevB.59.419. DOI

Mayer J., Meyer B., Oehrens J., Bester G., Börnsen N., Fähnle M. Effective formation energies of atomic defects in D03-Fe3Al: An ab-initio study. Intermetallics. 1997;5:597–600. doi: 10.1016/S0966-9795(97)00038-1. DOI

Kuriplach J. Structure of Defects, their Interactions and Positron Characteristics in Fe3Al system. Phys. Procedia. 2012;35:69–74. doi: 10.1016/j.phpro.2012.06.013. DOI

Deniszczyk J., Boroński E., Hanc A. Solid State Phenomena. Volume 194. Trans Tech Publications Ltd.; Zurich, Switzerland: 2013. Effect of Vacancies on Positron Annihilation and Hyperfine Interactions in Fe-Al Alloys-Ab Initio Study. Solid Compounds of Transition Elements II. Trans Tech Publications; pp. 272–275.

Kentzinger E., Cadeville M.C., Pierron-Bohnes V., Petry W., Hennion B. Lattice dynamics and migration enthalpies in iron-rich Fe-Al alloys and ordered and B2 compounds. J. Phys. Condens. Matter. 1996;8:5535–5553. doi: 10.1088/0953-8984/8/30/005. DOI

Gambino D., Alling B. Lattice relaxations in disordered Fe-based materials in the paramagnetic state from first principles. Phys. Rev. B. 2018;98:064105. doi: 10.1103/PhysRevB.98.064105. DOI

Koutná N., Holec D., Friák M., Mayrhofer P.H., Šob M. Stability and elasticity of metastable solid solutions and superlattices in the MoN–TaN system: First-principles calculations. Mater. Des. 2018;144:310–322. doi: 10.1016/j.matdes.2018.02.033. DOI

Mirzoev A.A., Mirzaev D.A., Verkhovykh A.V. Hydrogen-vacancy interactions in ferromagnetic and paramagnetic bcc iron: Ab initio calculations. Phys. Status Solidi B Basic Solid State Phys. 2015;252:1966–1970. doi: 10.1002/pssb.201451757. DOI

Marceau R.K.W., Ceguerra A.V., Breen A.J., Palm M., Stein F., Ringer S.P., Raabe D. Atom probe tomography investigation of heterogeneous short-range ordering in the ‘komplex’ phase state (K-state) of Fe-18Al (at.%) Intermetallics. 2015;64:23–31. doi: 10.1016/j.intermet.2015.04.005. DOI

Gorbatov O.I., Gornostyrev Y.N., Korzhavyi P.A., Ruban A.V. Ab initio modeling of decomposition in iron based alloys. Phys. Metals Metallogr. 2016;117:1293–1327. doi: 10.1134/S0031918X16130019. DOI

Nandipati G., Jiang X., Vemuri R.S., Mathaudhu S., Rohatgi A. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys. J. Phys. Condens. Matter. 2018;30 doi: 10.1088/1361-648X/aa9774. PubMed DOI

Kulikov N., Postnikov A., Borstel G., Braun J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B. 1999;59:6824–6833. doi: 10.1103/PhysRevB.59.6824. DOI

Jaglicic Z., Jagodic M., Grushko B., Zijlstra E.S., Weber T., Steurer W., Dolinsek J. The effect of thermal treatment on the magnetic state and cluster-related disorder of icosahedral Al-Pd-Mn quasicrystals. Intermetallics. 2010;18:623–632. doi: 10.1016/j.intermet.2009.10.017. DOI

Huang S., Worthington D.L., Asta M., Ozolins V., Ghosh G., Liaw P.K. Calculation of impurity diffusivities in α-Fe using first-principles methods. Acta Mater. 2010;58:1982–1993. doi: 10.1016/j.actamat.2009.11.041. DOI

Muzyk M., Nguyen-Manh D., Kurzydlowski K.J., Baluc N.L., Dudarev S.L. Phase stability, point defects, and elastic properties of W-V and W-Ta alloys. Phys. Rev. B. 2011;84 doi: 10.1103/PhysRevB.84.104115. DOI

Piochaud J.B., Klaver T.P.C., Adjanor G., Olsson P., Domain C., Becquart C.S. First-principles study of point defects in an fcc Fe-10Ni-20Cr model alloy. Phys. Rev. B. 2014;89 doi: 10.1103/PhysRevB.89.024101. DOI

Liu H.Y., Wang J.J., Jin J.F., Liu C.M., Zhang H.Y. A first-principles investigation on the effect of the divacancy defect on magnetic properties of Fe94V6 alloy. J. Appl. Phys. 2018;124:163904. doi: 10.1063/1.5042012. DOI

Schneider A., Fu C.C., Barreteau C. Local environment dependence of Mn magnetism in bcc iron-manganese alloys: A first-principles study. Phys. Rev. B. 2018;98:094426. doi: 10.1103/PhysRevB.98.094426. DOI

Ho K., Dodd R. Point-defects in FeAl. Scr. Metall. 1978;12:1055–1058. doi: 10.1016/0036-9748(78)90024-8. DOI

Chang Y., Pike L., Liu C., Bilbrey A., Stone D. Correlation of the hardness and vacancy concentration in FeAl. Intermetallics. 1993;1:107–115. doi: 10.1016/0966-9795(93)90028-T. DOI

Krachler R., Ipser H., Sepiol B., Vogl G. Diffusion mechanism and defect concentrations in β′-FeAl, an intermetallic compound with B2 structure. Intermetallics. 1995;3:83–88. doi: 10.1016/0966-9795(94)P3690-P. DOI

Hotar A., Kejzlar P., Palm M., Minarik J. The effect of Zr on high-temperature oxidation behaviour of Fe3Al-based alloys. Corros. Sci. 2015;100:147–157. doi: 10.1016/j.corsci.2015.07.016. DOI

Brito P., Schuller E., Silva J., Campos T., de Araujo C.R., Carneiro J.R. Electrochemical corrosion behaviour of (100), (110) and (111) Fe3A single crystals in sulphuric acid. Corros. Sci. 2017;126:366–373. doi: 10.1016/j.corsci.2017.05.029. DOI

Sauthoff G. Intermetallics. VCH Verlagsgesellschaft; Weinheim, Germany: 1995.

Liu C.T., Stringer J., Mundy J.N., Horton L.L., Angelini P. Ordered intermetallic alloys: An assessment. Intermetallics. 1997;5:579–596. doi: 10.1016/S0966-9795(97)00045-9. DOI

Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI

Liu C.T., Lee E.H., McKamey C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. Mater. 1989;23:875–880. doi: 10.1016/0036-9748(89)90263-9. DOI

Lynch R.J., Heldt L.A., Milligan W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall. Mater. 1991;25:2147–2151. doi: 10.1016/0956-716X(91)90290-H. DOI

Liu C.T., McKamey C.G., Lee E.H. Environmental-effects on room-temperature ductility and fracture in Fe3Al. Scr. Metall. Mater. 1990;24:385–389. doi: 10.1016/0956-716X(90)90275-L. DOI

Lynch R.J., Gee K.A., Heldt L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall. Mater. 1994;30:945–950. doi: 10.1016/0956-716X(94)90420-0. DOI

Li X., Prokopcakova P., Palm M. Microstructure and mechanical properties of Fe-Al-Ti-B alloys with additions of Mo and W. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2014;611:234–241. doi: 10.1016/j.msea.2014.05.077. DOI

Azmi S.A., Michalcova A., Sencekova L., Palm M. Microstructure and mechanical properties of Fe-Al-Nb-B alloys. MRS Adv. 2017;2:1353–1359. doi: 10.1557/adv.2017.138. DOI

Lazinska M., Durejko T., Czujko T., Bojar Z. The Effect of the Traverse Feed Rate on the Microstructure and Mechanical Properties of Laser Deposited Fe3Al (Zr,B) Intermetallic Alloy. Materials. 2018;11:792. doi: 10.3390/ma11050792. PubMed DOI PMC

Kratochvíl P., Daniš S., Minárik P., Pešička J., Král R. Strengthening of Fe3Al Aluminides by One or Two Solute Elements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017;48A:4135–4139. doi: 10.1007/s11661-017-4211-x. DOI

Zamanzade M., Barnoush A., Motz C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI

Dobeš F., Dymáček P., Friák M. Small punch creep of Fe-Al-Cr alloy with Ce addition and its relation to uniaxial creep tests. Kov. Mater.-Met. Mater. 2018;56:205–212. doi: 10.4149/km_2018_4_205. DOI

Jiraskova Y., Pizurova N., Titov A., Janickovic D., Friak M. Phase separation in Fe-Ti-Al alloy—Structural, magnetic, and Mossbauer study. J. Magn. Magn. Mater. 2018;468:91–99. doi: 10.1016/j.jmmm.2018.07.065. DOI

Dymáček P., Dobeš F., Jirásková Y., Pizúrová N., Friák M. Tensile, creep and fracture testing of prospective Fe-Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. 2019;99:18–26. doi: 10.1016/j.tafmec.2018.11.005. DOI

Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and Brittleness of Interfaces in Fe-Al Superalloy Nanocomposites under Multiaxial Loading: An ab initio and Atomistic Study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC

Rank M., Franke P., Seifert H.J. Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD. Int. J. Mater. Res. 2019;110:1–16. doi: 10.3139/146.111765. DOI

Kratochvíl P., Pešička J., Král R., Švec M., Palm M. Evaluation of solid-solution hardening of Fe-27 at. pct Al by vanadium and comparison to precipitation strengthening by vanadium carbides. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015;46A:5091–5094. doi: 10.1007/s11661-015-3106-y. DOI

Senčeková L., Palm M., Pešička J., Veselý J. Microstructures, mechanical properties and oxidation behaviour of single-phase Fe3Al (D03) and two-phase α-Fe-Al (A2) + Fe3Al (D03) Fe-Al-V alloys. Intermetallics. 2016;73:58–66. doi: 10.1016/j.intermet.2016.03.004. DOI

Shahid R.N., Scudino S. Strengthening of Al-Fe3Al composites by the generation of harmonic structures. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-24824-y. PubMed DOI PMC

Verona M.N., Setti D., Cortes Paredes R.S. Microstructure and Properties of Fe3Al-Fe3AlC (x) Composite Prepared by Reactive Liquid Processing. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2018;49:529–536. doi: 10.1007/s11663-017-1161-z. DOI

Prakash U. Intermetallic matrix composites based on iron aluminides. In: Mitra R., editor. Intermetallic Matrix Composites: Properties and Applications. Woodhead Publishing; Sawston, Cambridge, UK: 2018. pp. 21–35. (Woodhead Publishing Series in Composites Science and Engineering).

Sharifitabar M., Khaki J.V., Sabzevar M.H. Formation mechanism of TiC-Al2O3-Fe3Al composites during self-propagating high-temperature synthesis of TiO2-Al-C-Fe system. Ceram. Int. 2016;42:12361–12370. doi: 10.1016/j.ceramint.2016.05.009. DOI

Duan X., Gao S., Dong Q., Zhou Y., Xi M., Xian X., Wang B. Reinforcement mechanism and wear resistance of Al2O3/Fe-Cr-Mo steel composite coating produced by laser cladding. Surf. Coat. Technol. 2016;291:230–238. doi: 10.1016/j.surfcoat.2016.02.045. DOI

Kong J., Wei Y., Li J., Huang J., Wang T. Microwave-assisted combustion synthesis of Fe3Al bulk nanocrystalline intermetallic matrix composites. Adv. Powder Technol. 2015;26:778–782. doi: 10.1016/j.apt.2015.04.002. DOI

Imandoust A., Zarei-Hanzaki A., Ou K.L., Yu C.H. D03 Ordered Phase Strengthening in Dual Phase Twinning-Induced Plasticity Steel. J. Mater. Eng. Perform. 2015;24:2085–2090. doi: 10.1007/s11665-015-1488-z. DOI

Cheng J., Yin B., Qiao Z., Yang J., Liu W. Mechanical and dry-sliding tribological properties of Fe3Al based composites reinforced by novel W0.5Al0.5C0.5 particulates. Mater. Des. 2015;66:67–76. doi: 10.1016/j.matdes.2014.10.035. DOI

Molina A., Torres-Islas A., Serna S., Acosta-Flores M., Rodriguez-Diaz R.A., Colin J. Corrosion, Electrical and Mechanical Performance of Copper Matrix Composites Produced by Mechanical Alloying and Consolidation. Int. J. Electrochem. Sci. 2015;10:1728–1741.

Bai Y., Xing J., Guo Y., Li J., He Y., Ma S. Effect of Cr on Microstructure, Mechanical Properties, and Wear Behavior of In Situ 20 wt.%Al2O3/Fe-25Al Composites. J. Mater. Eng. Perform. 2015;24:936–945. doi: 10.1007/s11665-014-1367-z. DOI

Panda D., Kumar L., Alam S.N. Development of Al-Fe3Al Nanocomposite by Powder Metallurgy Route. Mater. Today Proc. 2015;2:3565–3574. doi: 10.1016/j.matpr.2015.07.070. DOI

Dobeš F., Kratochvíl P., Kejzlar P. Creep of three-phase alloy Fe-30%Al-5.2%Zr. Kov. Mater. Met. Mater. 2015;53:127–132. doi: 10.4149/km_2015_3_127. DOI

Kattner U., Burton B. Al-Fe (Aluminium-Iron) In: Okamoto H., editor. Phase Diagrams of Binary Iron Alloys. ASM International; Almere, The Netherlands: 1993. pp. 12–28.

Sundman B., Ohnuma I., Dupin N., Kattner U.R., Fries S.G. An assessment of the entire Al-Fe system including D03 ordering. Acta Mater. 2009;57:2896–2908. doi: 10.1016/j.actamat.2009.02.046. DOI

Fähnle M., Meyer B., Mayer J., Oehrens J., Bester G. Diffusion in metals and intermetallic compounds: The impact of an-initio calculations. MRS Proc. 1998;527:23. doi: 10.1557/PROC-527-23. DOI

Schaefer H.E., Würschum R., Šob M., Žák T., Yu W.Z., Eckert W., Banhart F. Thermal vacancies and positron-lifetime measurements in Fe76.3Al23.7. Phys. Rev. B. 1990;41:11869–11874. doi: 10.1103/PhysRevB.41.11869. PubMed DOI

Friák M., Deges J., Krein R., Frommeyer G., Neugebauer J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics. 2010;18:1310. doi: 10.1016/j.intermet.2010.02.025. DOI

Muratov L.S., Cooper B.R. Ab-initio based calculations of vacancy formation and clustering energies including lattice relaxation in Fe3Al. MRS Proc. 1998;538:309. doi: 10.1557/PROC-538-309. DOI

Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI

Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI

Zunger A., Wei S., Ferreira L., Bernard J. Special quasirandom structures. Phys. Rev. Lett. 1990;65:353–356. doi: 10.1103/PhysRevLett.65.353. PubMed DOI

Oganov A.R., Glass C.W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006;124:244704. doi: 10.1063/1.2210932. PubMed DOI

Lyakhov A.O., Oganov A.R., Stokes H.T., Zhu Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 2013;184:1172–1182. doi: 10.1016/j.cpc.2012.12.009. DOI

Oganov A.R., Lyakhov A.O., Valle M. How Evolutionary Crystal Structure Prediction Works—And Why. Acc. Chem. Res. 2011;44:227–237. doi: 10.1021/ar1001318. PubMed DOI

Wolff J., Franz M., Hehenkamp T. Defect analysis with positron annihilation—Applications to Fe aluminides. Microchim. Acta. 1997;125:263–268. doi: 10.1007/BF01246194. DOI

Friák M., Neugebauer J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics. 2010;18:1316–1321. doi: 10.1016/j.intermet.2010.03.014. DOI

Miháliková I., Slávik A., Friák M., Všianská M., Koutná N., Holec D., Šob M. First-principles study of interface energies in Fe-Al-based superalloy nanocomposites; Proceedings of the 9th International Conference on Nanomaterials—Research and Application; Brno, Czech Republic. 18–20 October 2017; pp. 69–74.

Miháliková I., Friák M., Jirásková Y., Holec D., Koutná N., Šob M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. Nanomaterials. 2018;8:1059. doi: 10.3390/nano8121059. PubMed DOI PMC

Ponomareva A.V., Gornostyrev Y.N., Abrikosov I.A. Ab initio calculation of the solution enthalpies of substitutional and interstitial impurities in paramagnetic fcc Fe. Phys. Rev. B. 2014;90:014439. doi: 10.1103/PhysRevB.90.014439. DOI

Stefanowicz S., Kunert G., Simserides C., Majewski J.A., Stefanowicz W., Kruse C., Figge S., Li T., Jakieła R., Trohidou K.N., et al. Phase diagram and critical behavior of the random ferromagnet Ga1-xMnxN. Phys. Rev. B. 2013;88:081201. doi: 10.1103/PhysRevB.88.081201. DOI

Priour D.J., Das Sarma S. Critical behavior of diluted magnetic semiconductors: Apparent violation and eventual restoration of the Harris criterion for all regimes of disorder. Phys. Rev. B. 2010;81:224403. doi: 10.1103/PhysRevB.81.224403. DOI

Ozolins V., Wolverton C., Zunger A. Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures. Phys. Rev. B. 1998;57:6427–6443. doi: 10.1103/PhysRevB.57.6427. DOI

Müller S. Bulk and surface ordering phenomena in binary metal alloys. J. Phys. Condens. Matter. 2003;15:R1429–R1500. doi: 10.1088/0953-8984/15/34/201. DOI

Tasnádi F., Lugovskoy A.V., Odén M., Abrikosov I.A. Non-equilibrium vacancy formation energies in metastable alloys—A case study of Ti0.5Al0.5N. Mater. Des. 2017;114:484–493. doi: 10.1016/j.matdes.2016.10.071. DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...