Impact of Antiphase Boundaries on Structural, Magnetic and Vibrational Properties of Fe3Al
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-08130S
Grantová Agentura České Republiky
CEITEC 2020 (Project No. LQ1601)
Ministerstvo Školství, Mládeže a Tělovýchovy
e-Infrastructure CZ - LM2018140
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33143267
PubMed Central
PMC7663394
DOI
10.3390/ma13214884
PII: ma13214884
Knihovny.cz E-zdroje
- Klíčová slova
- Fe-Al, ab initio, antiphase boundaries, magnetism, phonons, stability,
- Publikační typ
- časopisecké články MeSH
We performed a quantum-mechanical study of the effect of antiphase boundaries (APBs) on structural, magnetic and vibrational properties of Fe3Al compound. The studied APBs have the {001} crystallographic orientation of their sharp interfaces and they are characterized by a 1/2〈111〉 shift of atomic planes. There are two types of APB interfaces formed by either two adjacent planes of Fe atoms or by two adjacent planes containing both Fe and Al atoms. The averaged APB interface energy is found to be 80 mJ/m2 and we estimate the APB interface energy of each of the two types of interfaces to be within the range of 40-120 mJ/m2. The studied APBs affect local magnetic moments of Fe atoms near the defects, increasing magnetic moments of FeII atoms by as much as 11.8% and reducing those of FeI atoms by up to 4%. When comparing phonons in the Fe3Al with and without APBs within the harmonic approximation, we find a very strong influence of APBs. In particular, we have found a significant reduction of gap in frequencies that separates phonon modes below 7.9 THz and above 9.2 THz in the defect-free Fe3Al. All the APBs-induced changes result in a higher free energy, lower entropy and partly also a lower harmonic phonon energy in Fe3Al with APBs when compared with those in the defect-free bulk Fe3Al.
Zobrazit více v PubMed
Sauthoff G. Intermetallics. VCH Verlagsgesellschaft; Weinheim, Germany: 1995.
Liu C.T., Stringer J., Mundy J.N., Horton L.L., Angelini P. Ordered intermetallic alloys: An assessment. Intermetallics. 1997;5:579–596. doi: 10.1016/S0966-9795(97)00045-9. DOI
Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI
Liu C.T., Lee E.H., McKamey C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. Mater. 1989;23:875–880. doi: 10.1016/0036-9748(89)90263-9. DOI
Lynch R.J., Heldt L.A., Milligan W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall. Mater. 1991;25:2147–2151. doi: 10.1016/0956-716X(91)90290-H. DOI
Liu C.T., McKamey C.G., Lee E.H. Environmental-effects on room-temperature ductility and fracture in Fe3Al. Scr. Metall. Mater. 1990;24:385–389. doi: 10.1016/0956-716X(90)90275-L. DOI
Lynch R.J., Gee K.A., Heldt L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall. Mater. 1994;30:945–950. doi: 10.1016/0956-716X(94)90420-0. DOI
Zamanzade M., Barnoush A., Motz C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI
Kattner U., Burton B. In: Al-Fe (Aluminium-Iron). Phase Diagrams of Binary Iron Alloys. Okamoto H., editor. ASM International; Novelty, OH, USA: 1993. pp. 12–28.
Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilibria. 1995;16:209–222. doi: 10.1007/BF02667305. DOI
Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI
Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI
Sundman B., Ohnuma I., Dupin N., Kattner U.R., Fries S.G. An assessment of the entire Al-Fe system including D0(3) ordering. Acta Mater. 2009;57:2896–2908. doi: 10.1016/j.actamat.2009.02.046. DOI
Vernieres J., Benelmekki M., Kim J.H., Grammatikopoulos P., Bobo J.F., Diaz R.E., Sowwan M. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties. APL Mater. 2014;2:116105. doi: 10.1063/1.4901345. DOI
Jirásková Y., Pizúrová N., Titov A., Janičkovič D., Friák M. Phase separation in Fe-Ti-Al alloy—Structural, magnetic, and Mössbauer study. J. Magn. Magn. Mater. 2018;468:91–99. doi: 10.1016/j.jmmm.2018.07.065. DOI
Dobeš F., Dymáček P., Friák M. Force-to-Stress Conversion Methods in Small Punch Testing Exemplified by Creep Results of Fe-Al Alloy with Chromium and Cerium Additions. IOP Conf. Ser. Mater. Sci. Eng. 2018;461:012017. doi: 10.1088/1757-899X/461/1/012017. DOI
Dobeš F., Dymáček P., Friák M. Small punch creep of Fe-Al-Cr alloy with Ce addition and its relation to uniaxial creep tests. Kovové Mater. Met. Mater. 2018;56:205. doi: 10.4149/km_2018_4_205. DOI
Dymáček P., Dobeš F., Jirásková Y., Pizúrová N., Friák M. Tensile, creep and fracture testing of prospective Fe-Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. 2019;99:18–26. doi: 10.1016/j.tafmec.2018.11.005. DOI
Dobeš F., Dymáček P., Friák M. The Influence of Niobium Additions on Creep Resistance of Fe-27 at. % Al Alloys. Metals. 2019;9:739. doi: 10.3390/met9070739. DOI
Watson R.E., Weinert M. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B. 1998;58:5981–5988. doi: 10.1103/PhysRevB.58.5981. DOI
Gonzales-Ormeno P.G., Petrilli H.M., Schön C.G. Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad. 2002;26:573. doi: 10.1016/S0364-5916(02)80009-8. DOI
Friák M., Neugebauer J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics. 2010;18:1316–1321. doi: 10.1016/j.intermet.2010.03.014. DOI
Amara H., Fu C.C., Soisson F., Maugis P. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Phys. Rev. B. 2010;81:174101. doi: 10.1103/PhysRevB.81.174101. DOI
Liu S., Duan S., Ma B. First-principles calculation of vibrational entropy for Fe-Al compounds. Phys. Rev. B. 1998;58:9705–9709.
Kulikov N.I., Postnikov A.V., Borstel G., Braun J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B. 1999;59:6824–6833. doi: 10.1103/PhysRevB.59.6824. DOI
Fähnle M., Drautz R., Lechermann F., Singer R., Diaz-Ortiz A., Dosch H. Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Phys. Status Solidi B-Basic Solid State Phys. 2005;242:1159–1173. doi: 10.1002/pssb.200440010. DOI
Friák M., Deges J., Krein R., Frommeyer G., Neugebauer J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics. 2010;18:1310. doi: 10.1016/j.intermet.2010.02.025. DOI
Kirklin S., Saal J.E., Hegde V.I., Wolverton C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 2016;102:125–135. doi: 10.1016/j.actamat.2015.09.016. DOI
Airiskallio E., Nurmi E., Heinonen M.H., Vayrynen I.J., Kokko K., Ropo M., Punkkinen M.P.J., Pitkanen H., Alatalo M., Kollar J., et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010;52:3394–3404. doi: 10.1016/j.corsci.2010.06.019. DOI
Čížek J., Lukáč F., Procházka I., Kužel R., Jirásková Y., Janičkovič D., Anwand W., Brauer G. Characterization of quenched-in vacancies in Fe-Al alloys. Physica B. 2012;407:2659–2664. doi: 10.1016/j.physb.2011.12.122. DOI
Ipser H., Semenova O., Krachler R. Intermetallic phases with D0(3)-structure: A statistical-thermodynamic model. J. Alloys Compd. 2002;338:20–25. doi: 10.1016/S0925-8388(02)00177-9. DOI
Lechermann F., Welsch F., Elsässer C., Ederer C., Fähnle M., Sanchez J., Meyer B. Density-functional study of Fe3Al: LSDA versus GGA. Phys. Rev. B. 2002;65:132104. doi: 10.1103/PhysRevB.65.132104. DOI
Connetable D., Maugis P. First principle calculations of the kappa-Fe3AlC perovskite and iron-aluminium intermetallics. Intermetallics. 2008;16:345–352. doi: 10.1016/j.intermet.2007.09.011. DOI
Lechermann F., Fähnle M., Meyer B., Elsässer C. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study. Phys. Rev. B. 2004;69:165116. doi: 10.1103/PhysRevB.69.165116. DOI
Kellou A., Grosdidier T., Raulot J.M., Aourag H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi B-Basic Solid State Phys. 2008;245:750–755. doi: 10.1002/pssb.200743301. DOI
Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and brittleness of interfaces in Fe-Al superalloy nanocomposites under multiaxial loading: An ab initio and atomistic study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC
Friák M., Slávik A., Miháliková I., Holec D., Všianská M., Šob M., Palm M., Neugebauer J. Origin of the low magnetic moment in Fe2AlTi: An Ab initio study. Materials. 2018;11:1732. doi: 10.3390/ma11091732. PubMed DOI PMC
Miháliková I., Friák M., Jirásková Y., Holec D., Koutná N., Šob M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. Nanomaterials. 2018;8:1059. doi: 10.3390/nano8121059. PubMed DOI PMC
Friák M., Holec D., Šob M. Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies. Nanomaterials. 2018;8:1057. doi: 10.3390/nano8121057. PubMed DOI PMC
Miháliková I., Friák M., Koutná N., Holec D., Šob M. An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases. Materials. 2019;12:1430. doi: 10.3390/ma12091430. PubMed DOI PMC
Marcinkowski M., Brown N. Theory and direct observation of dislocations in the Fe3Al superlattices. Acta Metall. 1961;9:764–786. doi: 10.1016/0001-6160(61)90107-9. DOI
Marcinkowski M.J., Brown N. Direct Observation of Antiphase Boundaries in the Fe3Al Superlattice. J. Appl. Phys. 1962;33:537–552. doi: 10.1063/1.1702463. DOI
McKamey C.G., Horton J.A., Liu C.T. Effect of chromium on properties of Fe3Al. J. Mater. Res. 1989;4:1156–1163. doi: 10.1557/JMR.1989.1156. DOI
Morris D., Dadras M., Morris M. The influence of Cr addition on the ordered microstructure and deformation and fracture-behavior of a Fe-28-%-Al intermetallic. Acta Metall. Mater. 1993;41:97–111. doi: 10.1016/0956-7151(93)90342-P. DOI
Kral F., Schwander P., Kostorz G. Superdislocations and antiphase boundary energies in deformed Fe3Al single crystals with chromium. Acta Mater. 1997;45:675–682. doi: 10.1016/S1359-6454(96)00181-4. DOI
Allen S., Cahn J. Microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 1979;27:1085–1095. doi: 10.1016/0001-6160(79)90196-2. DOI
Wang K., Wang Y., Cheng Y. The Formation and Dynamic Evolution of Antiphase Domain Boundary in FeAl Alloy: Computational Simulation in Atomic Scale. Mater. Res. 2018;21 doi: 10.1590/1980-5373-mr-2017-1048. DOI
Balagurov A.M., Bobrikov I.A., Sumnikov V.S., Golovin I.S. Antiphase domains or dispersed clusters? Neutron diffraction study of coherent atomic ordering in Fe3Al-type alloys. Acta Mater. 2018;153:45–52. doi: 10.1016/j.actamat.2018.04.015. DOI
Murakami Y., Niitsu K., Tanigaki T., Kainuma R., Park H.S., Shindo D. Magnetization amplified by structural disorder within nanometre-scale interface region. Nat. Commun. 2014;5:4133. doi: 10.1038/ncomms5133. PubMed DOI PMC
Oguma R., Matsumura S., Eguchi T. Kinetics of B2-and D03 type ordering and formation of domain structures in Fe-Al alloys. J. Phys. Condens. Matter. 2008;20:275225. doi: 10.1088/0953-8984/20/27/275225. PubMed DOI
Friák M., Všianská M., Šob M. A Quantum–Mechanical Study of Clean and Cr–Segregated Antiphase Boundaries in Fe3Al. Materials. 2019;12:3954. doi: 10.3390/ma12233954. PubMed DOI PMC
Friák M., Buršíková V., Pizúrová N., Pavlů J., Jirásková Y., Homola V., Miháliková I., Slávik A., Holec D., Všianská M., et al. Elasticity of Phases in Fe-Al-Ti Superalloys: Impact of Atomic Order and Anti-Phase Boundaries. Crystals. 2019;9:299. doi: 10.3390/cryst9060299. DOI
Friák M., Golian M., Holec D., Koutná N., Šob M. An Ab Initio Study of Magnetism in Disordered Fe-Al Alloys with Thermal Antiphase Boundaries. Nanomaterials. 2020;10:44. doi: 10.3390/nano10010044. PubMed DOI PMC
Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI
Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI
Všianská M., Friák M., Šob M. An ab initio study of Fe3Al: A critical review of generalized gradient approximation. (to be published)
Togo A., Tanaka I. First principles phonon calculations in materials science. Scr. Mater. 2015;108:1–5. doi: 10.1016/j.scriptamat.2015.07.021. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Kentzinger E., Cadeville M.C., Pierron-Bohnes V., Petry W., Hennion B. Lattice dynamics and migration enthalpies in iron-rich Fe - Al alloys and ordered and B2 compounds. J. Phys. Condens. Matter. 1996;8:5535–5553. doi: 10.1088/0953-8984/8/30/005. DOI
Robertson I. Phonon dispersion curves in ordered and disordered Fe3Al. Solid State Commun. 1985;53:901–904. doi: 10.1016/0038-1098(85)90077-8. DOI
Ouyang Y., Tong X., Li C., Chen H., Tao X., Hickel T., Du Y. Thermodynamic and physical properties of FeAl and Fe3Al: An atomistic study by EAM simulation. Phys. B Condens. Matter. 2012;407:4530–4536. doi: 10.1016/j.physb.2012.08.025. DOI
Fultz B. Vibrational thermodynamics of materials. Prog. Mater. Sci. 2010;55:247–352. doi: 10.1016/j.pmatsci.2009.05.002. DOI
Manga V.R., Shang S.L., Wang W.Y., Wang Y., Liang J., Crespi V.H., Liu Z.K. Anomalous phonon stiffening associated with the (111) antiphase boundary in L12 Ni3Al. Acta Mater. 2015;82:287–294. doi: 10.1016/j.actamat.2014.09.005. DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
The Effect of Hydrogen on the Stress-Strain Response in Fe3Al: An ab initio Molecular-Dynamics Study