A Quantum-Mechanical Study of Clean and Cr-Segregated Antiphase Boundaries in Fe3Al
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-22139S
Grantová Agentura České Republiky
PubMed
31795289
PubMed Central
PMC6926628
DOI
10.3390/ma12233954
PII: ma12233954
Knihovny.cz E-zdroje
- Klíčová slova
- Fe3Al, ab initio, antiphase boundaries, chromium, magnetism, segregation, stability,
- Publikační typ
- časopisecké články MeSH
We present a quantum-mechanical study of thermodynamic, structural, elastic, and magnetic properties of selected antiphase boundaries (APBs) in Fe 3 Al with the D0 3 crystal structure with and without Cr atoms. The computed APBs are sharp (not thermal), and they have {001} crystallographic orientation. They are characterized by a mutual shift of grains by 1/2〈100〉a where a is the lattice parameter of a cube-shaped 16-atom elementary cell of Fe 3 Al, i.e., they affect the next nearest neighbors (APB-NNN type, also called APB-D0 3 ). Regarding clean APBs in Fe 3 Al, the studied ones have only a very minor impact on the structural and magnetic properties, including local magnetic moments, and the APB energy is rather low, about 80 ± 25 mJ/m 2 . Interestingly, they have a rather strong impact on the anisotropic (tensorial) elastic properties with the APB-induced change from a cubic symmetry to a tetragonal one, which is sensitively reflected by the directional dependence of linear compressibility. The Cr atoms have a strong impact on magnetic properties and a complex influence on the energetics of APBs. In particular, the Cr atoms in Fe 3 Al exhibit clustering tendencies even in the presence of APBs and cause a transition from a ferromagnetic (Cr-free Fe 3 Al) into a ferrimagnetic state. The Fe atoms with Cr atoms in their first coordination shell have their local atomic magnetic moments reduced. This reduction is synergically enhanced (to the point when Fe atoms are turned non-magnetic) when the influence of clustering of Cr atoms is combined with APBs, which offer specific atomic environments not existing in the APB-free bulk Fe 3 Al. The impact of Cr atoms on APB energies in Fe 3 Al is found to be ambiguous, including reduction, having a negligible influence or increasing APB energies depending on the local atomic configuration of Cr atoms, as well as their concentration.
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 CZ 616 62 Brno Czech Republic
Zobrazit více v PubMed
Sauthoff G. Intermetallics. VCH Verlagsgesellschaft; Weinheim, Germany: 1995.
Liu C.T., Stringer J., Mundy J.N., Horton L.L., Angelini P. Ordered intermetallic alloys: An assessment. Intermetallics. 1997;5:579–596. doi: 10.1016/S0966-9795(97)00045-9. DOI
Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI
Liu C.T., Lee E.H., McKamey C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. Mater. 1989;23:875–880. doi: 10.1016/0036-9748(89)90263-9. DOI
Lynch R.J., Heldt L.A., Milligan W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall. Mater. 1991;25:2147–2151. doi: 10.1016/0956-716X(91)90290-H. DOI
Liu C.T., McKamey C.G., Lee E.H. Environmental-effects on room-temperature ductility and fracture in Fe3Al. Scr. Metall. Mater. 1990;24:385–389. doi: 10.1016/0956-716X(90)90275-L. DOI
Lynch R.J., Gee K.A., Heldt L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall. Mater. 1994;30:945–950. doi: 10.1016/0956-716X(94)90420-0. DOI
Kattner U., Burton B. Al-Fe (Aluminium-Iron) In: Okamoto H., editor. Phase Diagrams of Binary Iron Alloys. ASM International; Materials Park, OH, USA: 1993. pp. 12–28.
Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilibria. 1995;16:209–222. doi: 10.1007/BF02667305. DOI
Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI
Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI
Sundman B., Ohnuma I., Dupin N., Kattner U.R., Fries S.G. An assessment of the entire Al-Fe system including D0(3) ordering. Acta Mater. 2009;57:2896–2908. doi: 10.1016/j.actamat.2009.02.046. DOI
Jirásková Y., Pizúrová N., Titov A., Janičkovič D., Friák M. Phase separation in Fe-Ti-Al alloy—Structural, magnetic, and Mössbauer study. J. Magn. Magn. Mater. 2018;468:91–99. doi: 10.1016/j.jmmm.2018.07.065. DOI
Dobeš F., Dymáček P., Friák M. Force-to-Stress Conversion Methods in Small Punch Testing Exemplified by Creep Results of Fe-Al Alloy with Chromium and Cerium Additions. IOP Conf. Ser. Mater. Sci. Eng. 2018;461:012017. doi: 10.1088/1757-899X/461/1/012017. DOI
Dobeš F., Dymáček P., Friák M. Small punch creep of Fe-Al-Cr alloy with Ce addition and its relation to uniaxial creep tests. Kov. Mater. Met. Mater. 2018;56:205. doi: 10.4149/km20184205. DOI
Dymáček P., Dobeš F., Jirásková Y., Pizúrová N., Friák M. Tensile, creep and fracture testing of prospective Fe-Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. 2019;99:18–26. doi: 10.1016/j.tafmec.2018.11.005. DOI
Dobeš F., Dymáček P., Friák M. The Influence of Niobium Additions on Creep Resistance of Fe-27 at. % Al Alloys. Metals. 2019;9:739. doi: 10.3390/met9070739. DOI
Watson R.E., Weinert M. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B. 1998;58:5981–5988. doi: 10.1103/PhysRevB.58.5981. DOI
Gonzales-Ormeno P., Petrilli H., Schon C. Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad-Comput. Coupling Ph. Diagrams Thermochem. 2002;26:573. doi: 10.1016/S0364-5916(02)80009-8. DOI
Friák M., Neugebauer J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics. 2010;18:1316–1321. doi: 10.1016/j.intermet.2010.03.014. DOI
Amara H., Fu C.C., Soisson F., Maugis P. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Phys. Rev. B. 2010;81:174101. doi: 10.1103/PhysRevB.81.174101. DOI
Liu S., Duan S., Ma B. First-principles calculation of vibrational entropy for Fe-Al compounds. Phys. Rev. B. 1998;58:9705–9709.
Kulikov N.I., Postnikov A.V., Borstel G., Braun J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B. 1999;59:6824–6833. doi: 10.1103/PhysRevB.59.6824. DOI
Fähnle M., Drautz R., Lechermann F., Singer R., Diaz-Ortiz A., Dosch H. Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Phys. Status Solidi B-Basic Solid State Phys. 2005;242:1159–1173. doi: 10.1002/pssb.200440010. DOI
Friák M., Deges J., Krein R., Frommeyer G., Neugebauer J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics. 2010;18:1310. doi: 10.1016/j.intermet.2010.02.025. DOI
Kirklin S., Saal J.E., Hegde V.I., Wolverton C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 2016;102:125–135. doi: 10.1016/j.actamat.2015.09.016. DOI
Airiskallio E., Nurmi E., Heinonen M.H., Vayrynen I.J., Kokko K., Ropo M., Punkkinen M.P.J., Pitkanen H., Alatalo M., Kollar J., et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010;52:3394–3404. doi: 10.1016/j.corsci.2010.06.019. DOI
Medvedeva N.I., Park M.S., Van Aken D.C., Medvedeva J.E. First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J. Alloy. Compd. 2014;582:475–482. doi: 10.1016/j.jallcom.2013.08.089. DOI
Čížek J., Lukáč F., Procházka I., Kužel R., Jirásková Y., Janičkovič D., Anwand W., Brauer G. Characterization of quenched-in vacancies in Fe-Al alloys. Physica B. 2012;407:2659–2664. doi: 10.1016/j.physb.2011.12.122. DOI
Ipser H., Semenova O., Krachler R. Intermetallic phases with D0(3)-structure: A statistical-thermodynamic model. J. Alloy. Compd. 2002;338:20–25. doi: 10.1016/S0925-8388(02)00177-9. DOI
Lechermann F., Welsch F., Elsässer C., Ederer C., Fähnle M., Sanchez J., Meyer B. Density-functional study of Fe3Al: LSDA versus GGA. Phys. Rev. B. 2002;65:132104. doi: 10.1103/PhysRevB.65.132104. DOI
Connetable D., Maugis P. First principle calculations of the kappa-Fe3AlC perovskite and iron-aluminium intermetallics. Intermetallics. 2008;16:345–352. doi: 10.1016/j.intermet.2007.09.011. DOI
Lechermann F., Fähnle M., Meyer B., Elsässer C. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study. Phys. Rev. B. 2004;69:165116. doi: 10.1103/PhysRevB.69.165116. DOI
Kellou A., Grosdidier T., Raulot J.M., Aourag H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi B-Basic Solid State Phys. 2008;245:750–755. doi: 10.1002/pssb.200743301. DOI
Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and brittleness of interfaces in Fe-Al superalloy nanocomposites under multiaxial loading: An ab initio and atomistic study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC
Friák M., Slávik A., Miháliková I., Holec D., Všianská M., Šob M., Palm M., Neugebauer J. Origin of the low magnetic moment in Fe2AlTi: An Ab initio study. Materials. 2018;11:1732. doi: 10.3390/ma11091732. PubMed DOI PMC
Miháliková I., Friák M., Jirásková Y., Holec D., Koutná N., Šob M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. Nanomaterials. 2018;8:1059. doi: 10.3390/nano8121059. PubMed DOI PMC
Friák M., Holec D., Šob M. Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies. Nanomaterials. 2018;8:1057. doi: 10.3390/nano8121057. PubMed DOI PMC
Miháliková I., Friák M., Koutná N., Holec D., Šob M. An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases. Materials. 2019;12:1430. doi: 10.3390/ma12091430. PubMed DOI PMC
Marcinkowski M., Brown N. Theory and direct observation of dislocations in the Fe3Al superlattices. Acta Metall. 1961;9:764–786. doi: 10.1016/0001-6160(61)90107-9. DOI
Marcinkowski M.J., Brown N. Direct Observation of Antiphase Boundaries in the Fe3Al Superlattice. J. Appl. Phys. 1962;33:537–552. doi: 10.1063/1.1702463. DOI
McKamey C.G., Horton J.A., Liu C.T. Effect of chromium on properties of Fe3Al. J. Mater. Res. 1989;4:1156–1163. doi: 10.1557/JMR.1989.1156. DOI
Morris D., Dadras M., Morris M. The influence of cr addition on the ordered microstructure and deformation and fracture-behavior of a fe-28-percent-al intermetallic. Acta Metall. Mater. 1993;41:97–111. doi: 10.1016/0956-7151(93)90342-P. DOI
Kral F., Schwander P., Kostorz G. Superdislocations and antiphase boundary energies in deformed Fe3Al single crystals with chromium. Acta Mater. 1997;45:675–682. doi: 10.1016/S1359-6454(96)00181-4. DOI
Allen S., Cahn J. Microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 1979;27:1085–1095. doi: 10.1016/0001-6160(79)90196-2. DOI
Wang K., Wang Y., Cheng Y. The Formation and Dynamic Evolution of Antiphase Domain Boundary in FeAl Alloy: Computational Simulation in Atomic Scale. Mater. Res. Ibero Am. J. Mater. 2018;21 doi: 10.1590/1980-5373-mr-2017-1048. DOI
Balagurov A.M., Bobrikov I.A., Sumnikov V.S., Golovin I.S. Antiphase domains or dispersed clusters? Neutron diffraction study of coherent atomic ordering in Fe3Al-type alloys. Acta Mater. 2018;153:45–52. doi: 10.1016/j.actamat.2018.04.015. DOI
Murakami Y., Niitsu K., Tanigaki T., Kainuma R., Park H.S., Shindo D. Magnetization amplified by structural disorder within nanometre-scale interface region. Nat. Commun. 2014;5:4133. doi: 10.1038/ncomms5133. PubMed DOI PMC
Oguma R., Matsumura S., Eguchi T. Kinetics of B2-and D03 type ordering and formation of domain structures in Fe-Al alloys. J. Phys. Condens. Matter. 2008;20:275225. doi: 10.1088/0953-8984/20/27/275225. PubMed DOI
McKamey C., Horton J., Liu C. Effect of chromium on room-temperature ductility and fracture mode in Fe3Al. Scr. Metall. 1988;22:1679–1681. doi: 10.1016/S0036-9748(88)80265-5. DOI
Culbertson G., Kortovich C.S. AFWAL-TR-4155. Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base; Dayton, OH, USA: 1986.
Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI
Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI
Zhou L., Holec D., Mayrhofer P.H. First-principles study of elastic properties of cubic Cr1−xAlxN alloys. J. Appl. Phys. 2013;113:043511. doi: 10.1063/1.4789378. DOI
Friák M., Buršíková V., Pizúrová N., Pavlů J., Jirásková Y., Homola V., Miháliková I., Slávik A., Holec D., Všianská M., et al. Elasticity of Phases in Fe-Al-Ti Superalloys: Impact of Atomic Order and Anti-Phase Boundaries. Crystals. 2019;9:299. doi: 10.3390/cryst9060299. DOI
Friák M., Lago D., Koutná N., Holec D., Rebok T., Šob M. Multi-phase ELAStic Aggregates (MELASA) software tool for modeling anisotropic elastic properties of lamellar composites. Comput. Phys. Commun. 2020;247:106863. doi: 10.1016/j.cpc.2019.106863. DOI
Friák M., Všianská M., Holec D., Zelený M., Šob M. Tensorial elastic properties and stability of interface states associated with Σ5(210) grain boundaries in Ni3(Al,Si) Sci. Technol. Adv. Mater. 2017;18:273. doi: 10.1080/14686996.2017.1312519. PubMed DOI PMC
Friák M., Všianská M., Holec D., Šob M. Quantum-mechanical study of tensorial elastic and high-temperature thermodynamic properties of grain boundary states in superalloy-phase Ni3Al. IOP Conf. Ser. Mater. Sci. Eng. 2017;219:012019. doi: 10.1088/1757-899X/219/1/012019. DOI
Friák M., Zelený M., Všianská M., Holec D., Šob M. An ab initio study of connections between tensorial elastic properties and chemical bonds in Σ5(210) grain boundaries in Ni3Si. Materials. 2018;11:2263. doi: 10.3390/ma11112263. PubMed DOI PMC
Grimsditch M., Nizzoli F. Effective elastic constants of superlattices of any symmetry. Phys. Rev. B. 1986;33:5891–5892. doi: 10.1103/PhysRevB.33.5891. PubMed DOI
Zamanzade M., Barnoush A., Motz C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI
Tang M., Carter W.C., Cannon R.M. Diffuse interface model for structural transitions of grain boundaries. Phys. Rev. B. 2006;73:024102. doi: 10.1103/PhysRevB.73.024102. DOI
Rohrer G.S. Grain boundary energy anisotropy: A review. J. Mater. Sci. 2011;46:5881–5895. doi: 10.1007/s10853-011-5677-3. DOI
Cantwell P.R., Tang M., Dillon S.J., Luo J., Rohrer G.S., Harmer M.P. Grain boundary complexions. Acta Mater. 2014;62:1–48. doi: 10.1016/j.actamat.2013.07.037. DOI
Rohrer G.S. Measuring and Interpreting the Structure of Grain-Boundary Networks. J. Amer. Ceram. Soc. 2011;94:633–646. doi: 10.1111/j.1551-2916.2011.04384.x. DOI
Kuzmina M., Herbig M., Ponge D., Sandlöbes S., Raabe D. Linear complexions: Confined chemical and structural states at dislocations. Science. 2015;349:1080–1083. doi: 10.1126/science.aab2633. PubMed DOI
Dillon S.J., Harmer M.P., Luo J. Grain Boundary Complexions in Ceramics and Metals: An Overview. JOM. 2009;61:38–44. doi: 10.1007/s11837-009-0179-3. DOI
Shi X., Luo J. Developing grain boundary diagrams as a materials science tool: A case study of nickel-doped molybdenum. Phys. Rev. B. 2011;84 doi: 10.1103/PhysRevB.84.014105. DOI
Kundu A., Asl K.M., Luo J., Harmer M.P. Identification of a bilayer grain boundary complexion in Bi-doped Cu. Scr. Mater. 2013;68:146–149. doi: 10.1016/j.scriptamat.2012.10.012. DOI
Bojarski S.A., Ma S., Lenthe W., Harmer M.P., Rohrer G.S. Changes in the Grain Boundary Character and Energy Distributions Resulting from a Complexion Transition in Ca-Doped Yttria. Metall. Mater. Trans. A. 2012;43A:3532–3538. doi: 10.1007/s11661-012-1172-y. DOI
Rickman J.M., Chan H.M., Harmer M.P., Luo J. Grain-boundary layering transitions in a model bicrystal. Surf. Sci. 2013;618:88–93. doi: 10.1016/j.susc.2013.09.004. DOI
Bojarski S.A., Harmer M.P., Rohrer G.S. Influence of grain boundary energy on the nucleation of complexion transitions. Scrip. Mater. 2014;88:1–4. doi: 10.1016/j.scriptamat.2014.06.016. DOI
Frazier W.E., Rohrer G.S., Rollett A.D. Abnormal grain growth in the Potts model incorporating grain boundary complexion transitions that increase the mobility of individual boundaries. Acta Mater. 2015;96:390–398. doi: 10.1016/j.actamat.2015.06.033. DOI
Zhou N., Luo J. Developing grain boundary diagrams for multicomponent alloys. Acta Mater. 2015;91:202–216. doi: 10.1016/j.actamat.2015.03.013. DOI
Moghadam M.M., Rickman J.M., Harmer M.P., Chan H.M. The role of boundary variability in polycrystalline grain-boundary diffusion. J. App. Phys. 2015;117:045311. doi: 10.1063/1.4906778. DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
The Effect of Hydrogen on the Stress-Strain Response in Fe3Al: An ab initio Molecular-Dynamics Study
Impact of Antiphase Boundaries on Structural, Magnetic and Vibrational Properties of Fe3Al
An Ab Initio Study of Magnetism in Disordered Fe-Al Alloys with Thermal Antiphase Boundaries