A Quantum-Mechanical Study of Clean and Cr-Segregated Antiphase Boundaries in Fe3Al

. 2019 Nov 28 ; 12 (23) : . [epub] 20191128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31795289

Grantová podpora
17-22139S Grantová Agentura České Republiky

We present a quantum-mechanical study of thermodynamic, structural, elastic, and magnetic properties of selected antiphase boundaries (APBs) in Fe 3 Al with the D0 3 crystal structure with and without Cr atoms. The computed APBs are sharp (not thermal), and they have {001} crystallographic orientation. They are characterized by a mutual shift of grains by 1/2〈100〉a where a is the lattice parameter of a cube-shaped 16-atom elementary cell of Fe 3 Al, i.e., they affect the next nearest neighbors (APB-NNN type, also called APB-D0 3 ). Regarding clean APBs in Fe 3 Al, the studied ones have only a very minor impact on the structural and magnetic properties, including local magnetic moments, and the APB energy is rather low, about 80 ± 25 mJ/m 2 . Interestingly, they have a rather strong impact on the anisotropic (tensorial) elastic properties with the APB-induced change from a cubic symmetry to a tetragonal one, which is sensitively reflected by the directional dependence of linear compressibility. The Cr atoms have a strong impact on magnetic properties and a complex influence on the energetics of APBs. In particular, the Cr atoms in Fe 3 Al exhibit clustering tendencies even in the presence of APBs and cause a transition from a ferromagnetic (Cr-free Fe 3 Al) into a ferrimagnetic state. The Fe atoms with Cr atoms in their first coordination shell have their local atomic magnetic moments reduced. This reduction is synergically enhanced (to the point when Fe atoms are turned non-magnetic) when the influence of clustering of Cr atoms is combined with APBs, which offer specific atomic environments not existing in the APB-free bulk Fe 3 Al. The impact of Cr atoms on APB energies in Fe 3 Al is found to be ambiguous, including reduction, having a negligible influence or increasing APB energies depending on the local atomic configuration of Cr atoms, as well as their concentration.

Zobrazit více v PubMed

Sauthoff G. Intermetallics. VCH Verlagsgesellschaft; Weinheim, Germany: 1995.

Liu C.T., Stringer J., Mundy J.N., Horton L.L., Angelini P. Ordered intermetallic alloys: An assessment. Intermetallics. 1997;5:579–596. doi: 10.1016/S0966-9795(97)00045-9. DOI

Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI

Liu C.T., Lee E.H., McKamey C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. Mater. 1989;23:875–880. doi: 10.1016/0036-9748(89)90263-9. DOI

Lynch R.J., Heldt L.A., Milligan W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall. Mater. 1991;25:2147–2151. doi: 10.1016/0956-716X(91)90290-H. DOI

Liu C.T., McKamey C.G., Lee E.H. Environmental-effects on room-temperature ductility and fracture in Fe3Al. Scr. Metall. Mater. 1990;24:385–389. doi: 10.1016/0956-716X(90)90275-L. DOI

Lynch R.J., Gee K.A., Heldt L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall. Mater. 1994;30:945–950. doi: 10.1016/0956-716X(94)90420-0. DOI

Kattner U., Burton B. Al-Fe (Aluminium-Iron) In: Okamoto H., editor. Phase Diagrams of Binary Iron Alloys. ASM International; Materials Park, OH, USA: 1993. pp. 12–28.

Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilibria. 1995;16:209–222. doi: 10.1007/BF02667305. DOI

Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI

Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI

Sundman B., Ohnuma I., Dupin N., Kattner U.R., Fries S.G. An assessment of the entire Al-Fe system including D0(3) ordering. Acta Mater. 2009;57:2896–2908. doi: 10.1016/j.actamat.2009.02.046. DOI

Jirásková Y., Pizúrová N., Titov A., Janičkovič D., Friák M. Phase separation in Fe-Ti-Al alloy—Structural, magnetic, and Mössbauer study. J. Magn. Magn. Mater. 2018;468:91–99. doi: 10.1016/j.jmmm.2018.07.065. DOI

Dobeš F., Dymáček P., Friák M. Force-to-Stress Conversion Methods in Small Punch Testing Exemplified by Creep Results of Fe-Al Alloy with Chromium and Cerium Additions. IOP Conf. Ser. Mater. Sci. Eng. 2018;461:012017. doi: 10.1088/1757-899X/461/1/012017. DOI

Dobeš F., Dymáček P., Friák M. Small punch creep of Fe-Al-Cr alloy with Ce addition and its relation to uniaxial creep tests. Kov. Mater. Met. Mater. 2018;56:205. doi: 10.4149/km20184205. DOI

Dymáček P., Dobeš F., Jirásková Y., Pizúrová N., Friák M. Tensile, creep and fracture testing of prospective Fe-Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. 2019;99:18–26. doi: 10.1016/j.tafmec.2018.11.005. DOI

Dobeš F., Dymáček P., Friák M. The Influence of Niobium Additions on Creep Resistance of Fe-27 at. % Al Alloys. Metals. 2019;9:739. doi: 10.3390/met9070739. DOI

Watson R.E., Weinert M. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B. 1998;58:5981–5988. doi: 10.1103/PhysRevB.58.5981. DOI

Gonzales-Ormeno P., Petrilli H., Schon C. Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad-Comput. Coupling Ph. Diagrams Thermochem. 2002;26:573. doi: 10.1016/S0364-5916(02)80009-8. DOI

Friák M., Neugebauer J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics. 2010;18:1316–1321. doi: 10.1016/j.intermet.2010.03.014. DOI

Amara H., Fu C.C., Soisson F., Maugis P. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Phys. Rev. B. 2010;81:174101. doi: 10.1103/PhysRevB.81.174101. DOI

Liu S., Duan S., Ma B. First-principles calculation of vibrational entropy for Fe-Al compounds. Phys. Rev. B. 1998;58:9705–9709.

Kulikov N.I., Postnikov A.V., Borstel G., Braun J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B. 1999;59:6824–6833. doi: 10.1103/PhysRevB.59.6824. DOI

Fähnle M., Drautz R., Lechermann F., Singer R., Diaz-Ortiz A., Dosch H. Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Phys. Status Solidi B-Basic Solid State Phys. 2005;242:1159–1173. doi: 10.1002/pssb.200440010. DOI

Friák M., Deges J., Krein R., Frommeyer G., Neugebauer J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics. 2010;18:1310. doi: 10.1016/j.intermet.2010.02.025. DOI

Kirklin S., Saal J.E., Hegde V.I., Wolverton C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 2016;102:125–135. doi: 10.1016/j.actamat.2015.09.016. DOI

Airiskallio E., Nurmi E., Heinonen M.H., Vayrynen I.J., Kokko K., Ropo M., Punkkinen M.P.J., Pitkanen H., Alatalo M., Kollar J., et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010;52:3394–3404. doi: 10.1016/j.corsci.2010.06.019. DOI

Medvedeva N.I., Park M.S., Van Aken D.C., Medvedeva J.E. First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J. Alloy. Compd. 2014;582:475–482. doi: 10.1016/j.jallcom.2013.08.089. DOI

Čížek J., Lukáč F., Procházka I., Kužel R., Jirásková Y., Janičkovič D., Anwand W., Brauer G. Characterization of quenched-in vacancies in Fe-Al alloys. Physica B. 2012;407:2659–2664. doi: 10.1016/j.physb.2011.12.122. DOI

Ipser H., Semenova O., Krachler R. Intermetallic phases with D0(3)-structure: A statistical-thermodynamic model. J. Alloy. Compd. 2002;338:20–25. doi: 10.1016/S0925-8388(02)00177-9. DOI

Lechermann F., Welsch F., Elsässer C., Ederer C., Fähnle M., Sanchez J., Meyer B. Density-functional study of Fe3Al: LSDA versus GGA. Phys. Rev. B. 2002;65:132104. doi: 10.1103/PhysRevB.65.132104. DOI

Connetable D., Maugis P. First principle calculations of the kappa-Fe3AlC perovskite and iron-aluminium intermetallics. Intermetallics. 2008;16:345–352. doi: 10.1016/j.intermet.2007.09.011. DOI

Lechermann F., Fähnle M., Meyer B., Elsässer C. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study. Phys. Rev. B. 2004;69:165116. doi: 10.1103/PhysRevB.69.165116. DOI

Kellou A., Grosdidier T., Raulot J.M., Aourag H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi B-Basic Solid State Phys. 2008;245:750–755. doi: 10.1002/pssb.200743301. DOI

Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and brittleness of interfaces in Fe-Al superalloy nanocomposites under multiaxial loading: An ab initio and atomistic study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC

Friák M., Slávik A., Miháliková I., Holec D., Všianská M., Šob M., Palm M., Neugebauer J. Origin of the low magnetic moment in Fe2AlTi: An Ab initio study. Materials. 2018;11:1732. doi: 10.3390/ma11091732. PubMed DOI PMC

Miháliková I., Friák M., Jirásková Y., Holec D., Koutná N., Šob M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. Nanomaterials. 2018;8:1059. doi: 10.3390/nano8121059. PubMed DOI PMC

Friák M., Holec D., Šob M. Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies. Nanomaterials. 2018;8:1057. doi: 10.3390/nano8121057. PubMed DOI PMC

Miháliková I., Friák M., Koutná N., Holec D., Šob M. An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases. Materials. 2019;12:1430. doi: 10.3390/ma12091430. PubMed DOI PMC

Marcinkowski M., Brown N. Theory and direct observation of dislocations in the Fe3Al superlattices. Acta Metall. 1961;9:764–786. doi: 10.1016/0001-6160(61)90107-9. DOI

Marcinkowski M.J., Brown N. Direct Observation of Antiphase Boundaries in the Fe3Al Superlattice. J. Appl. Phys. 1962;33:537–552. doi: 10.1063/1.1702463. DOI

McKamey C.G., Horton J.A., Liu C.T. Effect of chromium on properties of Fe3Al. J. Mater. Res. 1989;4:1156–1163. doi: 10.1557/JMR.1989.1156. DOI

Morris D., Dadras M., Morris M. The influence of cr addition on the ordered microstructure and deformation and fracture-behavior of a fe-28-percent-al intermetallic. Acta Metall. Mater. 1993;41:97–111. doi: 10.1016/0956-7151(93)90342-P. DOI

Kral F., Schwander P., Kostorz G. Superdislocations and antiphase boundary energies in deformed Fe3Al single crystals with chromium. Acta Mater. 1997;45:675–682. doi: 10.1016/S1359-6454(96)00181-4. DOI

Allen S., Cahn J. Microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 1979;27:1085–1095. doi: 10.1016/0001-6160(79)90196-2. DOI

Wang K., Wang Y., Cheng Y. The Formation and Dynamic Evolution of Antiphase Domain Boundary in FeAl Alloy: Computational Simulation in Atomic Scale. Mater. Res. Ibero Am. J. Mater. 2018;21 doi: 10.1590/1980-5373-mr-2017-1048. DOI

Balagurov A.M., Bobrikov I.A., Sumnikov V.S., Golovin I.S. Antiphase domains or dispersed clusters? Neutron diffraction study of coherent atomic ordering in Fe3Al-type alloys. Acta Mater. 2018;153:45–52. doi: 10.1016/j.actamat.2018.04.015. DOI

Murakami Y., Niitsu K., Tanigaki T., Kainuma R., Park H.S., Shindo D. Magnetization amplified by structural disorder within nanometre-scale interface region. Nat. Commun. 2014;5:4133. doi: 10.1038/ncomms5133. PubMed DOI PMC

Oguma R., Matsumura S., Eguchi T. Kinetics of B2-and D03 type ordering and formation of domain structures in Fe-Al alloys. J. Phys. Condens. Matter. 2008;20:275225. doi: 10.1088/0953-8984/20/27/275225. PubMed DOI

McKamey C., Horton J., Liu C. Effect of chromium on room-temperature ductility and fracture mode in Fe3Al. Scr. Metall. 1988;22:1679–1681. doi: 10.1016/S0036-9748(88)80265-5. DOI

Culbertson G., Kortovich C.S. AFWAL-TR-4155. Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base; Dayton, OH, USA: 1986.

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI

Zhou L., Holec D., Mayrhofer P.H. First-principles study of elastic properties of cubic Cr1−xAlxN alloys. J. Appl. Phys. 2013;113:043511. doi: 10.1063/1.4789378. DOI

Friák M., Buršíková V., Pizúrová N., Pavlů J., Jirásková Y., Homola V., Miháliková I., Slávik A., Holec D., Všianská M., et al. Elasticity of Phases in Fe-Al-Ti Superalloys: Impact of Atomic Order and Anti-Phase Boundaries. Crystals. 2019;9:299. doi: 10.3390/cryst9060299. DOI

Friák M., Lago D., Koutná N., Holec D., Rebok T., Šob M. Multi-phase ELAStic Aggregates (MELASA) software tool for modeling anisotropic elastic properties of lamellar composites. Comput. Phys. Commun. 2020;247:106863. doi: 10.1016/j.cpc.2019.106863. DOI

Friák M., Všianská M., Holec D., Zelený M., Šob M. Tensorial elastic properties and stability of interface states associated with Σ5(210) grain boundaries in Ni3(Al,Si) Sci. Technol. Adv. Mater. 2017;18:273. doi: 10.1080/14686996.2017.1312519. PubMed DOI PMC

Friák M., Všianská M., Holec D., Šob M. Quantum-mechanical study of tensorial elastic and high-temperature thermodynamic properties of grain boundary states in superalloy-phase Ni3Al. IOP Conf. Ser. Mater. Sci. Eng. 2017;219:012019. doi: 10.1088/1757-899X/219/1/012019. DOI

Friák M., Zelený M., Všianská M., Holec D., Šob M. An ab initio study of connections between tensorial elastic properties and chemical bonds in Σ5(210) grain boundaries in Ni3Si. Materials. 2018;11:2263. doi: 10.3390/ma11112263. PubMed DOI PMC

Grimsditch M., Nizzoli F. Effective elastic constants of superlattices of any symmetry. Phys. Rev. B. 1986;33:5891–5892. doi: 10.1103/PhysRevB.33.5891. PubMed DOI

Zamanzade M., Barnoush A., Motz C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI

Tang M., Carter W.C., Cannon R.M. Diffuse interface model for structural transitions of grain boundaries. Phys. Rev. B. 2006;73:024102. doi: 10.1103/PhysRevB.73.024102. DOI

Rohrer G.S. Grain boundary energy anisotropy: A review. J. Mater. Sci. 2011;46:5881–5895. doi: 10.1007/s10853-011-5677-3. DOI

Cantwell P.R., Tang M., Dillon S.J., Luo J., Rohrer G.S., Harmer M.P. Grain boundary complexions. Acta Mater. 2014;62:1–48. doi: 10.1016/j.actamat.2013.07.037. DOI

Rohrer G.S. Measuring and Interpreting the Structure of Grain-Boundary Networks. J. Amer. Ceram. Soc. 2011;94:633–646. doi: 10.1111/j.1551-2916.2011.04384.x. DOI

Kuzmina M., Herbig M., Ponge D., Sandlöbes S., Raabe D. Linear complexions: Confined chemical and structural states at dislocations. Science. 2015;349:1080–1083. doi: 10.1126/science.aab2633. PubMed DOI

Dillon S.J., Harmer M.P., Luo J. Grain Boundary Complexions in Ceramics and Metals: An Overview. JOM. 2009;61:38–44. doi: 10.1007/s11837-009-0179-3. DOI

Shi X., Luo J. Developing grain boundary diagrams as a materials science tool: A case study of nickel-doped molybdenum. Phys. Rev. B. 2011;84 doi: 10.1103/PhysRevB.84.014105. DOI

Kundu A., Asl K.M., Luo J., Harmer M.P. Identification of a bilayer grain boundary complexion in Bi-doped Cu. Scr. Mater. 2013;68:146–149. doi: 10.1016/j.scriptamat.2012.10.012. DOI

Bojarski S.A., Ma S., Lenthe W., Harmer M.P., Rohrer G.S. Changes in the Grain Boundary Character and Energy Distributions Resulting from a Complexion Transition in Ca-Doped Yttria. Metall. Mater. Trans. A. 2012;43A:3532–3538. doi: 10.1007/s11661-012-1172-y. DOI

Rickman J.M., Chan H.M., Harmer M.P., Luo J. Grain-boundary layering transitions in a model bicrystal. Surf. Sci. 2013;618:88–93. doi: 10.1016/j.susc.2013.09.004. DOI

Bojarski S.A., Harmer M.P., Rohrer G.S. Influence of grain boundary energy on the nucleation of complexion transitions. Scrip. Mater. 2014;88:1–4. doi: 10.1016/j.scriptamat.2014.06.016. DOI

Frazier W.E., Rohrer G.S., Rollett A.D. Abnormal grain growth in the Potts model incorporating grain boundary complexion transitions that increase the mobility of individual boundaries. Acta Mater. 2015;96:390–398. doi: 10.1016/j.actamat.2015.06.033. DOI

Zhou N., Luo J. Developing grain boundary diagrams for multicomponent alloys. Acta Mater. 2015;91:202–216. doi: 10.1016/j.actamat.2015.03.013. DOI

Moghadam M.M., Rickman J.M., Harmer M.P., Chan H.M. The role of boundary variability in polycrystalline grain-boundary diffusion. J. App. Phys. 2015;117:045311. doi: 10.1063/1.4906778. DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...