An Ab Initio Study of Connections between Tensorial Elastic Properties and Chemical Bonds in Σ5(210) Grain Boundaries in Ni₃Si
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-24711S
Grantová Agentura České Republiky
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_025/0007304
ESIF, EU Operational Programme Research, Development and Education
PubMed
30428570
PubMed Central
PMC6265990
DOI
10.3390/ma11112263
PII: ma11112263
Knihovny.cz E-zdroje
- Klíčová slova
- COHP, Ni3Si, ab initio, elasticity, grain boundaries, phonon, stability,
- Publikační typ
- časopisecké články MeSH
Using quantum-mechanical methods we calculate and analyze (tensorial) anisotropic elastic properties of the ground-state configurations of interface states associated with Σ 5(210) grain boundaries (GBs) in cubic L1 2 -structure Ni 3 Si. We assess the mechanical stability of interface states with two different chemical compositions at the studied GB by checking rigorous elasticity-based Born stability criteria. In particular, we show that a GB variant containing both Ni and Si atoms at the interface is unstable with respect to shear deformation (one of the elastic constants, C 55 , is negative). This instability is found for a rectangular-parallelepiped supercell obtained when applying standard coincidence-lattice construction. Our elastic-constant analysis allowed us to identify a shear-deformation mode reducing the energy and, eventually, to obtain mechanically stable ground-state characterized by a shear-deformed parallelepiped supercell. Alternatively, we tested a stabilization of this GB interface state by Al substituents replacing Si atoms at the GB. We further discuss an atomistic origin of this instability in terms of the crystal orbital Hamilton population (COHP) and phonon dispersion calculations. We find that the unstable GB variant shows a very strong interaction between the Si atoms in the GB plane and Ni atoms in the 3rd plane off the GB interface. However, such bond reinforcement results in weakening of interaction between the Ni atoms in the 3rd plane and the Si atoms in the 5th plane making this GB variant mechanically unstable.
Zobrazit více v PubMed
Duscher G., Chisholm M.F., Alber U., Ruhle M. Bismuth-induced embrittlement of copper grain boundaries. Nat. Mater. 2004;3:621–626. doi: 10.1038/nmat1191. PubMed DOI
Lu G.H., Deng S.H., Wang T.M., Kohyama M., Yamamoto R. Theoretical tensile strength of an Al grain boundary. Phys. Rev. B. 2004;69:134106. doi: 10.1103/PhysRevB.69.134106. DOI
Kohyama M. Ab initio study of the tensile strength and fracture of coincidence tilt boundaries in cubic SiC: Polar interfaces of the {122} Σ9 boundary. Phys. Rev. B. 2002;65:184107. doi: 10.1103/PhysRevB.65.184107. DOI
Ogata S., Umeno Y., Kohyama M. First-principles approaches to intrinsic strength and deformation of materials: Perfect crystals, nano-structures, surfaces and interfaces. Model. Simul. Mater. Sci. Eng. 2009;17:013001. doi: 10.1088/0965-0393/17/1/013001. DOI
Pokluda J., Černý M., Šob M., Umeno Y. Ab initio calculations of mechanical properties: Methods and applications. Prog. Mater. Sci. 2015;73:127–158. doi: 10.1016/j.pmatsci.2015.04.001. DOI
Tang M., Carter W.C., Cannon R.M. Diffuse interface model for structural transitions of grain boundaries. Phys. Rev. B. 2006;73:024102. doi: 10.1103/PhysRevB.73.024102. DOI
Rohrer G.S. Grain boundary energy anisotropy: A review. J. Mater. Sci. 2011;46:5881–5895. doi: 10.1007/s10853-011-5677-3. DOI
Cantwell P.R., Tang M., Dillon S.J., Luo J., Rohrer G.S., Harmer M.P. Grain boundary complexions. Acta Mater. 2014;62:1–48. doi: 10.1016/j.actamat.2013.07.037. DOI
Rohrer G.S. Measuring and Interpreting the Structure of Grain-Boundary Networks. J. Am. Ceram. Soc. 2011;94:633–646. doi: 10.1111/j.1551-2916.2011.04384.x. DOI
Raabe D., Herbig M., Sandlöbes S., Li Y., Tytko D., Kuzmina M., Ponge D., Choi P.P. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Sol. State Mater. Sci. 2014;18:253–261. doi: 10.1016/j.cossms.2014.06.002. DOI
Dillon S.J., Harmer M.P., Luo J. Grain Boundary Complexions in Ceramics and Metals: An Overview. JOM. 2009;61:38–44. doi: 10.1007/s11837-009-0179-3. DOI
Shi X., Luo J. Developing grain boundary diagrams as a materials science tool: A case study of nickel-doped molybdenum. Phys. Rev. B. 2011;84:014105. doi: 10.1103/PhysRevB.84.014105. DOI
Kundu A., Asl K.M., Luo J., Harmer M.P. Identification of a bilayer grain boundary complexion in Bi-doped Cu. Scr. Mater. 2013;68:146–149. doi: 10.1016/j.scriptamat.2012.10.012. DOI
Bojarski S.A., Ma S., Lenthe W., Harmer M.P., Rohrer G.S. Changes in the Grain Boundary Character and Energy Distributions Resulting from a Complexion Transition in Ca-Doped Yttria. Metall. Mater. Trans. A. 2012;43A:3532–3538. doi: 10.1007/s11661-012-1172-y. DOI
Rickman J.M., Chan H.M., Harmer M.P., Luo J. Grain-boundary layering transitions in a model bicrystal. Surf. Sci. 2013;618:88–93. doi: 10.1016/j.susc.2013.09.004. DOI
Bojarski S.A., Harmer M.P., Rohrer G.S. Influence of grain boundary energy on the nucleation of complexion transitions. Scr. Mater. 2014;88:1–4. doi: 10.1016/j.scriptamat.2014.06.016. DOI
Frazier W.E., Rohrer G.S., Rollett A.D. Abnormal grain growth in the Potts model incorporating grain boundary complexion transitions that increase the mobility of individual boundaries. Acta Mater. 2015;96:390–398. doi: 10.1016/j.actamat.2015.06.033. DOI
Zhou N., Luo J. Developing grain boundary diagrams for multicomponent alloys. Acta Mater. 2015;91:202–216. doi: 10.1016/j.actamat.2015.03.013. DOI
Moghadam M.M., Rickman J.M., Harmer M.P., Chan H.M. The role of boundary variability in polycrystalline grain-boundary diffusion. J. Appl. Phys. 2015;117:045311. doi: 10.1063/1.4906778. DOI
Lu G.H., Zhang Y., Deng S., Wang T., Kohyama M., Yamamoto R., Liu F., Horikawa K., Kanno M. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening. Phys. Rev. B. 2006;73:224115. doi: 10.1103/PhysRevB.73.224115. DOI
Yan M., Šob M., Luzzi D.E., Vitek V., Ackland G., Methfessel M., Rodriguez C. Interatomic forces and atomic-structure of grain-boundaries in copper-bismuth alloys. Phys. Rev. B. 1993;47:5571–5582. doi: 10.1103/PhysRevB.47.5571. PubMed DOI
Braithwaite J.S., Rez P. Grain boundary impurities in iron. Acta Mater. 2005;53:2715–2726. doi: 10.1016/j.actamat.2005.02.033. DOI
Christensen M., Wahnstrom G. Co-phase penetration of WC(1010)/WC(110) grain boundaries from first principles. Phys. Rev. B. 2003;67:115415. doi: 10.1103/PhysRevB.67.115415. DOI
Du Y.A., Ismer L., Rogal J., Hickel T., Neugebauer J., Drautz R. First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe. Phys. Rev. B. 2011;84:144121. doi: 10.1103/PhysRevB.84.144121. DOI
Asta M., Hoyt J.J. Thermodynamic properties of coherent interfaces in f.c.c.-based Ag-Al alloys: A first-principles study. Acta Mater. 2000;48:1089–1096. doi: 10.1016/S1359-6454(99)00412-7. DOI
Thomson D.I., Heine V., Payne M.C., Marzari N., Finnis M.W. Insight into gallium behavior in aluminum grain boundaries from calculation on Σ11 (113) boundary. Acta Mater. 2000;48:3623–3632. doi: 10.1016/S1359-6454(00)00175-0. DOI
Wachowicz E., Ossowski T., Kiejna A. Cohesive and magnetic properties of grain boundaries in bcc Fe with Cr additions. Phys. Rev. B. 2010;81:094104. doi: 10.1103/PhysRevB.81.094104. DOI
Wachowicz E., Kiejna A. Effect of impurities on grain boundary cohesion in bcc iron. Comput. Mater. Sci. 2008;43:736–743. doi: 10.1016/j.commatsci.2008.01.063. DOI
Sutton A.P., Balluffi R.W. Interfaces in Crystalline Materials. Oxford University Press; Oxford, UK: 1995.
Lejček P. Grain Boundary Segregation in Metals. Springer; Heidelberg, Germany: 2010.
Liu C.T., George E.P., Oliver W.C. Grain-boundary fracture and boron effect in Ni3Si alloys. Intermetallics. 1996;4:77–83. doi: 10.1016/0966-9795(95)96901-5. DOI
Vitek V. Micromechanisms of intergranular brittle fracture in intermetallic compounds. J. Phys. III France. 1991;1:1085–1097. doi: 10.1051/jp3:1991173. DOI
Kruisman J.J., Vitek V., Hosson J.D. Atomic structure of stoichiometric and non-stoichiometric grain boundaries in A3B compounds with L12 structure. Acta Metall. 1988;36:2729–2741. doi: 10.1016/0001-6160(88)90119-8. DOI
Briant C.L. Intermetallic Compounds: Principles. Volume 1. JohnWiley and Sons, Ltd.; New York, NY, USA: 1994. p. 895.
Stoloff N., Liu C., Deevi S. Emerging applications of intermetallics. Intermetallics. 2000;8:1313–1320. doi: 10.1016/S0966-9795(00)00077-7. DOI
Takasugi T., Izumi O. Electronic and structural studies of grain boundary strength and fracture in L12 ordered alloys—I. On binary A3B alloys. Acta Metall. 1985;33:1247–1258. doi: 10.1016/0001-6160(85)90236-6. DOI
Taub A., Briant C. Composition dependence of ductility in boron-doped, nickel-base L12 alloys. Acta Metall. 1987;35:1597–1603. doi: 10.1016/0001-6160(87)90107-6. DOI
Messmer R., Briant C. The role of chemical bonding in grain boundary embrittlement. Acta Metall. 1982;30:457–467. doi: 10.1016/0001-6160(82)90226-7. DOI
Liu C.T., White C.L., Horton J.A. Effect of boron on grain-boundaries in Ni3Al. Acta Metall. 1985;33:213–229. doi: 10.1016/0001-6160(85)90139-7. DOI
Schulson E., Briggs L., Baker I. The strength and ductility of Ni3Si. Acta Metall. Mater. 1990;38:207–213. doi: 10.1016/0956-7151(90)90050-Q. DOI
Aoki K., Izumi O. Improvement in room temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition. J. Jpn. Inst. Met. 1979;43:1190–1196. doi: 10.2320/jinstmet1952.43.12_1190. DOI
Takasugi T., Nagashima M., Izumi O. Strengthening and ductilization of Ni3Si by the addition of Ti elements. Acta Metall. Mater. 1990;38:747–755. doi: 10.1016/0956-7151(90)90026-D. DOI
Heatherly L., George E., Liu C., Kumar K. An Auger investigation of the grain-boundary chemistry in Ni3(Si,Ti) alloys. Mater. Sci. Eng. A. 1998;245:80–87. doi: 10.1016/S0921-5093(97)00691-6. DOI
Friák M., Všianská M., Holec D., Zelený M., Šob M. Tensorial elastic properties and stability of interface states associated with Σ5 (210) grain boundaries in Ni3 (Al, Si) Sci. Technol. Adv. Mater. 2017;18:273. doi: 10.1080/14686996.2017.1312519. PubMed DOI PMC
Friák M., Všianská M., Holec D., Šob M. Quantum-mechanical study of tensorial elastic and high-temperature thermodynamic properties of grain boundary states in superalloy-phase Ni3Al. IOP Conf. Ser. Mater. Sci. Eng. 2017;219:012019. doi: 10.1088/1757-899X/219/1/012019. DOI
Slater J.C. Introduction to Chemical Physics. McGraw-Hill; New York, NY, USA: 1939.
Lu G., Kioussis N., Wu R., Ciftan M. First-principles studies of the Σ5 tilt grain boundary in Ni3Al. Phys. Rev. B. 1999;59:891. doi: 10.1103/PhysRevB.59.891. DOI
Muller D.A., Singh D.J., Silcox J. Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: A study of nickel aluminum alloys. Phys. Rev. B. 1998;57:8181–8202. doi: 10.1103/PhysRevB.57.8181. DOI
Mrovec M., Groeger R., Bailey A.G., Nguyen-Manh D., Elsässer C., Vitek V. Bond-order potential for simulations of extended defects in tungsten. Phys. Rev. B. 2007;75:104119. doi: 10.1103/PhysRevB.75.104119. DOI
Lojkowski W., Fecht H.J. The structure of intercrystalline interfaces. Prog. Mater. Sci. 2000;45:339–568. doi: 10.1016/S0079-6425(99)00008-0. DOI
Kohyama M. Computational studies of grain boundaries in covalent materials. Model. Simul. Mater. Sci. Eng. 2002;10:R31–R59. doi: 10.1088/0965-0393/10/3/202. DOI
Ochs T., Beck O., Elsässer C., Meyer B. Symmetrical tilt grain boundaries in body-centred cubic transition metals: An ab initio local-density-functional study. Philos. Mag. A. 2000;80:2405–2423. doi: 10.1080/01418610008216481. DOI
Všianská M., Šob M. The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog. Mat. Sci. 2011;56:817. doi: 10.1016/j.pmatsci.2011.01.008. DOI
Všianská M., Šob M. Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel. Phys. Rev. B. 2011;84:014418. doi: 10.1103/PhysRevB.84.014418. DOI
Lejček P., Šob M., Paidar V. Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results. Prog. Mater. Sci. 2017;87:83–139. doi: 10.1016/j.pmatsci.2016.11.001. DOI
Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Methfessel M., Paxton A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 1989;40:3616–3621. doi: 10.1103/PhysRevB.40.3616. PubMed DOI
Dronskowski R., Blöchl P.E. Crystal Orbital Hamilton Populations (COHP). Energy-Resolved Visualization of Chemical Bonding in Solids based on Density-Functional Calculations. J. Phys. Chem. 1993;97:8617–8624. doi: 10.1021/j100135a014. DOI
Deringer V.L., Tchougreeff A.L., Dronskowski R. Crystal Orbital Hamilton Population (COHP) Analysis as Projected from Plane-Wave Basis Sets. J. Phys. Chem. A. 2011;115:5461–5466. doi: 10.1021/jp202489s. PubMed DOI
Maintz S., Deringer V.L., Tchougreeff A.L., Dronskowski R. Analytic Projection from Plane-Wave and PAW Wavefunctions and Application to Chemical-Bonding Analysis in Solids. J. Comput. Chem. 2013;34:2557–2567. doi: 10.1002/jcc.23424. PubMed DOI
Maintz S., Deringer V.L., Tchougreeff A.L., Dronskowski R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016;37:1030–1035. doi: 10.1002/jcc.24300. PubMed DOI PMC
Yu R., Zhu J., Ye H.Q. Calculations of single-crystal elastic constants made simple. Comput. Phys. Commun. 2010;181:671–675. doi: 10.1016/j.cpc.2009.11.017. DOI
Zhou L., Holec D., Mayrhofer P.H. Ab initio study of the alloying effect of transition metals on structure, stability and ductility of CrN. J. Appl. Phys. 2013;113:043511. doi: 10.1063/1.4789378. DOI
Togo A., Tanaka I. First principles phonon calculations in materials science. Scr. Mater. 2015;108:1–5. doi: 10.1016/j.scriptamat.2015.07.021. DOI
Parlinski K., Li Z.Q., Kawazoe Y. First-Principles Determination of the Soft Mode in Cubic ZrO2. Phys. Rev. Lett. 1997;78:4063–4066. doi: 10.1103/PhysRevLett.78.4063. DOI
Deringer V.L., Stoffel R.P., Wuttig M., Dronskowski R. Vibrational properties and bonding nature of Sb2Se3 and their implications for chalcogenide materials. Chem. Sci. 2015;6:5255–5262. doi: 10.1039/C5SC00825E. PubMed DOI PMC
Zhou G., Bakker H. Atomic disorder and phase transformation in L12-structure Ni3Si by ball milling. Acta Metall. Mater. 1994;42:3009–3017. doi: 10.1016/0956-7151(94)90397-2. DOI
Kumar A., Wang J., Tomé C.N. First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals. Acta Mater. 2015;85:144–154. doi: 10.1016/j.actamat.2014.11.015. DOI
Prikhodko S.V., Ma Y., Ardell A.J., Isaak D.G., Carnes J.D., Moser S. Elastic constants of face-centered cubic and L12 Ni–Si alloys: Composition and temperature dependence. Metall. Mater. Trans. A. 2003;34:1863–1868. doi: 10.1007/s11661-003-0151-8. DOI
Fu C.L., Ye Y.Y., Yoo M.H. Theoretical investigation of the elastic constants and shear fault energies of Ni3Si. Philos. Mag. Lett. 1993;67:179–185. doi: 10.1080/09500839308240927. DOI
Iotova D., Kioussis N., Lim S.P. Electronic structure and elastic properties of the Ni3X (X = Mn, Al, Ga, Si, Ge) intermetallics. Phys. Rev. B. 1996;54:14413–14422. doi: 10.1103/PhysRevB.54.14413. PubMed DOI
Liu L., Chen L., Jiang Y., He C., Xu G., Wen Y. Temperature Effects on the Elastic Constants, Stacking Fault Energy and Twinnability of Ni3Si and Ni3Ge: A First-Principles Study. Crystals. 2018;8:364. doi: 10.3390/cryst8090364. DOI
Mouhat F., Coudert F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI
Černý M. Elastic stability of magnetic crystals under isotropic compression and tension. Mater. Sci. Eng. A. 2007;462:432–435. doi: 10.1016/j.msea.2006.02.458. DOI
Titrian H., Aydin U., Friák M., Ma D., Raabe D., Neugebauer J. Self-consistent Scale-bridging Approach to Compute the Elasticity of Multi-phase Polycrystalline Materials. MRS Proc. 2013;1524:mrsf12-1524-rr06-03. doi: 10.1557/opl.2013.41. DOI
Friák M., Counts W., Ma D., Sander B., Holec D., Raabe D., Neugebauer J. Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties. Materials. 2012;5:1853–1872. doi: 10.3390/ma5101853. DOI
Zhu L.F., Friák M., Lymperakis L., Titrian H., Aydin U., Janus A., Fabritius H.O., Ziegler A., Nikolov S., Hemzalová P., et al. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals. J. Mech. Behav. Biomed. Mater. 2013;20:296–304. doi: 10.1016/j.jmbbm.2013.01.030. PubMed DOI
Gaillac R., Pullumbi P., Coudert F.X. ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter. 2016;28:275201. doi: 10.1088/0953-8984/28/27/275201. PubMed DOI
Wolf D., Lutsko J.F. Structurally induced supermodulus effect in superlattices. Phys. Rev. Lett. 1988;60:1170–1173. doi: 10.1103/PhysRevLett.60.1170. PubMed DOI
Kluge M.D., Wolf D., Lutsko J.F., Phillpot S.R. Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation. J. Appl. Phys. 1990;67:2370–2379. doi: 10.1063/1.345533. DOI
Hughbanks T., Hoffmann R. Chains of trans-edge-sharing molybdenum octahedra: Metal-metal bonding in extended systems. J. Am. Chem. Soc. 1983;105:3528–3537. doi: 10.1021/ja00349a027. DOI
Bylander D.M., Kleinman L., Mednick K. Self-consistent energy bands and bonding of NiSi2. Phys. Rev. B. 1982;25:1090–1095. doi: 10.1103/PhysRevB.25.1090. DOI
Yoo M., Fu C., Horton J. Crack-tip dislocations and fracture behavior in Ni3Al and Ni3Si. Mater. Sci. Eng. A. 1994;176:431–437. doi: 10.1016/0921-5093(94)91011-1. DOI
Pang X.Y., Janisch R., Hartmaier A. Interplanar potential for tension-shear coupling at grain boundaries derived from ab initio calculations. Model. Simul. Mater. Sci. Eng. 2016;24:015007. doi: 10.1088/0965-0393/24/1/015007. DOI
Razumovskiy V.I., Ruban A., Razumovskii I., Lozovoi A., Butrim V., Vekilov Y. The effect of alloying elements on grain boundary and bulk cohesion in aluminum alloys: An ab initio study. Scr. Mater. 2011;65:926–929. doi: 10.1016/j.scriptamat.2011.08.014. DOI
Tahir A.M., Janisch R., Hartmaier A. Hydrogen embrittlement of a carbon segregated Σ 5(310)[001] symmetrical tilt grain boundary in α-Fe. Mater. Sci. Eng. A. 2014;612:462–467. doi: 10.1016/j.msea.2014.06.071. DOI
Tahir A.M., Janisch R., Hartmaier A. Ab initio calculation of traction separation laws for a grain boundary in molybdenum with segregated C impurites. Model. Simul. Mater. Sci. Eng. 2013;21:075005. doi: 10.1088/0965-0393/21/7/075005. DOI
Razumovskiy V.I., Vekilov Y.K., Razumovskii I.M., Ruban A.V., Butrim V.N., Mironenko V.N. Effect of alloying elements and impurities on interface properties in aluminum alloys. Phys. Solid State. 2011;53:2189–2193. doi: 10.1134/S1063783411110266. DOI
Hristova E., Janisch R., Drautz R., Hartmaier A. Solubility of carbon in α-iron under volumetric strain and close to the Σ5(310)[001] grain boundary: Comparison of DFT and empirical potential methods. Comput. Mater. Sci. 2011;50:1088–1096. doi: 10.1016/j.commatsci.2010.11.006. DOI
Janisch R., Ahmed N., Hartmaier A. Ab initio tensile tests of Al bulk crystals and grain boundaries: Universality of mechanical behavior. Phys. Rev. B. 2010;81:184108. doi: 10.1103/PhysRevB.81.184108. DOI
Razumovskiy V.I., Lozovoi A.Y., Razumovskii I.M. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater. 2015;82:369–377. doi: 10.1016/j.actamat.2014.08.047. DOI
Scheiber D., Razumovskiy V.I., Puschnig P., Pippan R., Romaner L. Ab initio description of segregation and cohesion of grain boundaries in W–25at.% Re alloys. Acta Mater. 2015;88:180–189. doi: 10.1016/j.actamat.2014.12.053. DOI
Janisch R., Elsässer C. Interstitial impurities at grain boundaries in metals: Insight from atomistic calculations. Int. J. Mater. Res. 2009;100:1488–1493. doi: 10.3139/146.110206. DOI
Janisch R., Elsässer C. Growth and mechanical properties of a MoC precipitate at a Mo grain boundary: An ab initio density functional theory study. Phys. Rev. B. 2008;77:094118. doi: 10.1103/PhysRevB.77.094118. DOI
Gemming S., Janisch R., Schreiber M., Spaldin N.A. Density-functional investigation of the (113)[-110] twin grain boundary in Co-doped anatase TiO2 and its influence on magnetism in dilute magnetic semiconductors. Phys. Rev. B. 2007;76:045204. doi: 10.1103/PhysRevB.76.045204. DOI
Janisch R., Elsässer C. Segregated light elements at grain boundaries in niobium and molybdenum. Phys. Rev. B. 2003;67:224101. doi: 10.1103/PhysRevB.67.224101. DOI
Šob M., Wang L.G., Vitek V. Local stability of higher-energy phases in metallic materials and its relation to the structure of extended defects. Comput. Mater. Sci. 1997;8:100–106. doi: 10.1016/S0927-0256(97)00022-0. DOI
Wang L.G., Šob M., Zhang Z.Y. Instability of higher-energy phases in simple and transition metals. J. Phys. Chem. Solids. 2003;64:863–872. doi: 10.1016/S0022-3697(02)00420-1. DOI
Šob M., Wang L.G., Vitek V. Ab initio calculation of the ideal tensile strength in copper and nickel aluminide. Kovove Mater. Met. Mater. 1998;36:145–152.
Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and Brittleness of Interfaces in Fe-Al Superalloy Nanocomposites under Multiaxial Loading: An ab initio and Atomistic Study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC
Černý M., Šesták P., Řehák P., Všianská M., Šob M. Ab initio tensile tests of grain boundaries in the fcc crystals of Ni and Co with segregated sp-impurities. Mater. Sci. Eng. A. 2016;669:218–225. doi: 10.1016/j.msea.2016.05.083. DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
A Quantum-Mechanical Study of Clean and Cr-Segregated Antiphase Boundaries in Fe3Al