An Ab Initio Study of Connections between Tensorial Elastic Properties and Chemical Bonds in Σ5(210) Grain Boundaries in Ni₃Si

. 2018 Nov 13 ; 11 (11) : . [epub] 20181113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30428570

Grantová podpora
16-24711S Grantová Agentura České Republiky
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_025/0007304 ESIF, EU Operational Programme Research, Development and Education

Using quantum-mechanical methods we calculate and analyze (tensorial) anisotropic elastic properties of the ground-state configurations of interface states associated with Σ 5(210) grain boundaries (GBs) in cubic L1 2 -structure Ni 3 Si. We assess the mechanical stability of interface states with two different chemical compositions at the studied GB by checking rigorous elasticity-based Born stability criteria. In particular, we show that a GB variant containing both Ni and Si atoms at the interface is unstable with respect to shear deformation (one of the elastic constants, C 55 , is negative). This instability is found for a rectangular-parallelepiped supercell obtained when applying standard coincidence-lattice construction. Our elastic-constant analysis allowed us to identify a shear-deformation mode reducing the energy and, eventually, to obtain mechanically stable ground-state characterized by a shear-deformed parallelepiped supercell. Alternatively, we tested a stabilization of this GB interface state by Al substituents replacing Si atoms at the GB. We further discuss an atomistic origin of this instability in terms of the crystal orbital Hamilton population (COHP) and phonon dispersion calculations. We find that the unstable GB variant shows a very strong interaction between the Si atoms in the GB plane and Ni atoms in the 3rd plane off the GB interface. However, such bond reinforcement results in weakening of interaction between the Ni atoms in the 3rd plane and the Si atoms in the 5th plane making this GB variant mechanically unstable.

Zobrazit více v PubMed

Duscher G., Chisholm M.F., Alber U., Ruhle M. Bismuth-induced embrittlement of copper grain boundaries. Nat. Mater. 2004;3:621–626. doi: 10.1038/nmat1191. PubMed DOI

Lu G.H., Deng S.H., Wang T.M., Kohyama M., Yamamoto R. Theoretical tensile strength of an Al grain boundary. Phys. Rev. B. 2004;69:134106. doi: 10.1103/PhysRevB.69.134106. DOI

Kohyama M. Ab initio study of the tensile strength and fracture of coincidence tilt boundaries in cubic SiC: Polar interfaces of the {122} Σ9 boundary. Phys. Rev. B. 2002;65:184107. doi: 10.1103/PhysRevB.65.184107. DOI

Ogata S., Umeno Y., Kohyama M. First-principles approaches to intrinsic strength and deformation of materials: Perfect crystals, nano-structures, surfaces and interfaces. Model. Simul. Mater. Sci. Eng. 2009;17:013001. doi: 10.1088/0965-0393/17/1/013001. DOI

Pokluda J., Černý M., Šob M., Umeno Y. Ab initio calculations of mechanical properties: Methods and applications. Prog. Mater. Sci. 2015;73:127–158. doi: 10.1016/j.pmatsci.2015.04.001. DOI

Tang M., Carter W.C., Cannon R.M. Diffuse interface model for structural transitions of grain boundaries. Phys. Rev. B. 2006;73:024102. doi: 10.1103/PhysRevB.73.024102. DOI

Rohrer G.S. Grain boundary energy anisotropy: A review. J. Mater. Sci. 2011;46:5881–5895. doi: 10.1007/s10853-011-5677-3. DOI

Cantwell P.R., Tang M., Dillon S.J., Luo J., Rohrer G.S., Harmer M.P. Grain boundary complexions. Acta Mater. 2014;62:1–48. doi: 10.1016/j.actamat.2013.07.037. DOI

Rohrer G.S. Measuring and Interpreting the Structure of Grain-Boundary Networks. J. Am. Ceram. Soc. 2011;94:633–646. doi: 10.1111/j.1551-2916.2011.04384.x. DOI

Raabe D., Herbig M., Sandlöbes S., Li Y., Tytko D., Kuzmina M., Ponge D., Choi P.P. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Sol. State Mater. Sci. 2014;18:253–261. doi: 10.1016/j.cossms.2014.06.002. DOI

Dillon S.J., Harmer M.P., Luo J. Grain Boundary Complexions in Ceramics and Metals: An Overview. JOM. 2009;61:38–44. doi: 10.1007/s11837-009-0179-3. DOI

Shi X., Luo J. Developing grain boundary diagrams as a materials science tool: A case study of nickel-doped molybdenum. Phys. Rev. B. 2011;84:014105. doi: 10.1103/PhysRevB.84.014105. DOI

Kundu A., Asl K.M., Luo J., Harmer M.P. Identification of a bilayer grain boundary complexion in Bi-doped Cu. Scr. Mater. 2013;68:146–149. doi: 10.1016/j.scriptamat.2012.10.012. DOI

Bojarski S.A., Ma S., Lenthe W., Harmer M.P., Rohrer G.S. Changes in the Grain Boundary Character and Energy Distributions Resulting from a Complexion Transition in Ca-Doped Yttria. Metall. Mater. Trans. A. 2012;43A:3532–3538. doi: 10.1007/s11661-012-1172-y. DOI

Rickman J.M., Chan H.M., Harmer M.P., Luo J. Grain-boundary layering transitions in a model bicrystal. Surf. Sci. 2013;618:88–93. doi: 10.1016/j.susc.2013.09.004. DOI

Bojarski S.A., Harmer M.P., Rohrer G.S. Influence of grain boundary energy on the nucleation of complexion transitions. Scr. Mater. 2014;88:1–4. doi: 10.1016/j.scriptamat.2014.06.016. DOI

Frazier W.E., Rohrer G.S., Rollett A.D. Abnormal grain growth in the Potts model incorporating grain boundary complexion transitions that increase the mobility of individual boundaries. Acta Mater. 2015;96:390–398. doi: 10.1016/j.actamat.2015.06.033. DOI

Zhou N., Luo J. Developing grain boundary diagrams for multicomponent alloys. Acta Mater. 2015;91:202–216. doi: 10.1016/j.actamat.2015.03.013. DOI

Moghadam M.M., Rickman J.M., Harmer M.P., Chan H.M. The role of boundary variability in polycrystalline grain-boundary diffusion. J. Appl. Phys. 2015;117:045311. doi: 10.1063/1.4906778. DOI

Lu G.H., Zhang Y., Deng S., Wang T., Kohyama M., Yamamoto R., Liu F., Horikawa K., Kanno M. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening. Phys. Rev. B. 2006;73:224115. doi: 10.1103/PhysRevB.73.224115. DOI

Yan M., Šob M., Luzzi D.E., Vitek V., Ackland G., Methfessel M., Rodriguez C. Interatomic forces and atomic-structure of grain-boundaries in copper-bismuth alloys. Phys. Rev. B. 1993;47:5571–5582. doi: 10.1103/PhysRevB.47.5571. PubMed DOI

Braithwaite J.S., Rez P. Grain boundary impurities in iron. Acta Mater. 2005;53:2715–2726. doi: 10.1016/j.actamat.2005.02.033. DOI

Christensen M., Wahnstrom G. Co-phase penetration of WC(1010)/WC(110) grain boundaries from first principles. Phys. Rev. B. 2003;67:115415. doi: 10.1103/PhysRevB.67.115415. DOI

Du Y.A., Ismer L., Rogal J., Hickel T., Neugebauer J., Drautz R. First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe. Phys. Rev. B. 2011;84:144121. doi: 10.1103/PhysRevB.84.144121. DOI

Asta M., Hoyt J.J. Thermodynamic properties of coherent interfaces in f.c.c.-based Ag-Al alloys: A first-principles study. Acta Mater. 2000;48:1089–1096. doi: 10.1016/S1359-6454(99)00412-7. DOI

Thomson D.I., Heine V., Payne M.C., Marzari N., Finnis M.W. Insight into gallium behavior in aluminum grain boundaries from calculation on Σ11 (113) boundary. Acta Mater. 2000;48:3623–3632. doi: 10.1016/S1359-6454(00)00175-0. DOI

Wachowicz E., Ossowski T., Kiejna A. Cohesive and magnetic properties of grain boundaries in bcc Fe with Cr additions. Phys. Rev. B. 2010;81:094104. doi: 10.1103/PhysRevB.81.094104. DOI

Wachowicz E., Kiejna A. Effect of impurities on grain boundary cohesion in bcc iron. Comput. Mater. Sci. 2008;43:736–743. doi: 10.1016/j.commatsci.2008.01.063. DOI

Sutton A.P., Balluffi R.W. Interfaces in Crystalline Materials. Oxford University Press; Oxford, UK: 1995.

Lejček P. Grain Boundary Segregation in Metals. Springer; Heidelberg, Germany: 2010.

Liu C.T., George E.P., Oliver W.C. Grain-boundary fracture and boron effect in Ni3Si alloys. Intermetallics. 1996;4:77–83. doi: 10.1016/0966-9795(95)96901-5. DOI

Vitek V. Micromechanisms of intergranular brittle fracture in intermetallic compounds. J. Phys. III France. 1991;1:1085–1097. doi: 10.1051/jp3:1991173. DOI

Kruisman J.J., Vitek V., Hosson J.D. Atomic structure of stoichiometric and non-stoichiometric grain boundaries in A3B compounds with L12 structure. Acta Metall. 1988;36:2729–2741. doi: 10.1016/0001-6160(88)90119-8. DOI

Briant C.L. Intermetallic Compounds: Principles. Volume 1. JohnWiley and Sons, Ltd.; New York, NY, USA: 1994. p. 895.

Stoloff N., Liu C., Deevi S. Emerging applications of intermetallics. Intermetallics. 2000;8:1313–1320. doi: 10.1016/S0966-9795(00)00077-7. DOI

Takasugi T., Izumi O. Electronic and structural studies of grain boundary strength and fracture in L12 ordered alloys—I. On binary A3B alloys. Acta Metall. 1985;33:1247–1258. doi: 10.1016/0001-6160(85)90236-6. DOI

Taub A., Briant C. Composition dependence of ductility in boron-doped, nickel-base L12 alloys. Acta Metall. 1987;35:1597–1603. doi: 10.1016/0001-6160(87)90107-6. DOI

Messmer R., Briant C. The role of chemical bonding in grain boundary embrittlement. Acta Metall. 1982;30:457–467. doi: 10.1016/0001-6160(82)90226-7. DOI

Liu C.T., White C.L., Horton J.A. Effect of boron on grain-boundaries in Ni3Al. Acta Metall. 1985;33:213–229. doi: 10.1016/0001-6160(85)90139-7. DOI

Schulson E., Briggs L., Baker I. The strength and ductility of Ni3Si. Acta Metall. Mater. 1990;38:207–213. doi: 10.1016/0956-7151(90)90050-Q. DOI

Aoki K., Izumi O. Improvement in room temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition. J. Jpn. Inst. Met. 1979;43:1190–1196. doi: 10.2320/jinstmet1952.43.12_1190. DOI

Takasugi T., Nagashima M., Izumi O. Strengthening and ductilization of Ni3Si by the addition of Ti elements. Acta Metall. Mater. 1990;38:747–755. doi: 10.1016/0956-7151(90)90026-D. DOI

Heatherly L., George E., Liu C., Kumar K. An Auger investigation of the grain-boundary chemistry in Ni3(Si,Ti) alloys. Mater. Sci. Eng. A. 1998;245:80–87. doi: 10.1016/S0921-5093(97)00691-6. DOI

Friák M., Všianská M., Holec D., Zelený M., Šob M. Tensorial elastic properties and stability of interface states associated with Σ5 (210) grain boundaries in Ni3 (Al, Si) Sci. Technol. Adv. Mater. 2017;18:273. doi: 10.1080/14686996.2017.1312519. PubMed DOI PMC

Friák M., Všianská M., Holec D., Šob M. Quantum-mechanical study of tensorial elastic and high-temperature thermodynamic properties of grain boundary states in superalloy-phase Ni3Al. IOP Conf. Ser. Mater. Sci. Eng. 2017;219:012019. doi: 10.1088/1757-899X/219/1/012019. DOI

Slater J.C. Introduction to Chemical Physics. McGraw-Hill; New York, NY, USA: 1939.

Lu G., Kioussis N., Wu R., Ciftan M. First-principles studies of the Σ5 tilt grain boundary in Ni3Al. Phys. Rev. B. 1999;59:891. doi: 10.1103/PhysRevB.59.891. DOI

Muller D.A., Singh D.J., Silcox J. Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: A study of nickel aluminum alloys. Phys. Rev. B. 1998;57:8181–8202. doi: 10.1103/PhysRevB.57.8181. DOI

Mrovec M., Groeger R., Bailey A.G., Nguyen-Manh D., Elsässer C., Vitek V. Bond-order potential for simulations of extended defects in tungsten. Phys. Rev. B. 2007;75:104119. doi: 10.1103/PhysRevB.75.104119. DOI

Lojkowski W., Fecht H.J. The structure of intercrystalline interfaces. Prog. Mater. Sci. 2000;45:339–568. doi: 10.1016/S0079-6425(99)00008-0. DOI

Kohyama M. Computational studies of grain boundaries in covalent materials. Model. Simul. Mater. Sci. Eng. 2002;10:R31–R59. doi: 10.1088/0965-0393/10/3/202. DOI

Ochs T., Beck O., Elsässer C., Meyer B. Symmetrical tilt grain boundaries in body-centred cubic transition metals: An ab initio local-density-functional study. Philos. Mag. A. 2000;80:2405–2423. doi: 10.1080/01418610008216481. DOI

Všianská M., Šob M. The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog. Mat. Sci. 2011;56:817. doi: 10.1016/j.pmatsci.2011.01.008. DOI

Všianská M., Šob M. Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel. Phys. Rev. B. 2011;84:014418. doi: 10.1103/PhysRevB.84.014418. DOI

Lejček P., Šob M., Paidar V. Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results. Prog. Mater. Sci. 2017;87:83–139. doi: 10.1016/j.pmatsci.2016.11.001. DOI

Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Methfessel M., Paxton A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 1989;40:3616–3621. doi: 10.1103/PhysRevB.40.3616. PubMed DOI

Dronskowski R., Blöchl P.E. Crystal Orbital Hamilton Populations (COHP). Energy-Resolved Visualization of Chemical Bonding in Solids based on Density-Functional Calculations. J. Phys. Chem. 1993;97:8617–8624. doi: 10.1021/j100135a014. DOI

Deringer V.L., Tchougreeff A.L., Dronskowski R. Crystal Orbital Hamilton Population (COHP) Analysis as Projected from Plane-Wave Basis Sets. J. Phys. Chem. A. 2011;115:5461–5466. doi: 10.1021/jp202489s. PubMed DOI

Maintz S., Deringer V.L., Tchougreeff A.L., Dronskowski R. Analytic Projection from Plane-Wave and PAW Wavefunctions and Application to Chemical-Bonding Analysis in Solids. J. Comput. Chem. 2013;34:2557–2567. doi: 10.1002/jcc.23424. PubMed DOI

Maintz S., Deringer V.L., Tchougreeff A.L., Dronskowski R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016;37:1030–1035. doi: 10.1002/jcc.24300. PubMed DOI PMC

Yu R., Zhu J., Ye H.Q. Calculations of single-crystal elastic constants made simple. Comput. Phys. Commun. 2010;181:671–675. doi: 10.1016/j.cpc.2009.11.017. DOI

Zhou L., Holec D., Mayrhofer P.H. Ab initio study of the alloying effect of transition metals on structure, stability and ductility of CrN. J. Appl. Phys. 2013;113:043511. doi: 10.1063/1.4789378. DOI

Togo A., Tanaka I. First principles phonon calculations in materials science. Scr. Mater. 2015;108:1–5. doi: 10.1016/j.scriptamat.2015.07.021. DOI

Parlinski K., Li Z.Q., Kawazoe Y. First-Principles Determination of the Soft Mode in Cubic ZrO2. Phys. Rev. Lett. 1997;78:4063–4066. doi: 10.1103/PhysRevLett.78.4063. DOI

Deringer V.L., Stoffel R.P., Wuttig M., Dronskowski R. Vibrational properties and bonding nature of Sb2Se3 and their implications for chalcogenide materials. Chem. Sci. 2015;6:5255–5262. doi: 10.1039/C5SC00825E. PubMed DOI PMC

Zhou G., Bakker H. Atomic disorder and phase transformation in L12-structure Ni3Si by ball milling. Acta Metall. Mater. 1994;42:3009–3017. doi: 10.1016/0956-7151(94)90397-2. DOI

Kumar A., Wang J., Tomé C.N. First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals. Acta Mater. 2015;85:144–154. doi: 10.1016/j.actamat.2014.11.015. DOI

Prikhodko S.V., Ma Y., Ardell A.J., Isaak D.G., Carnes J.D., Moser S. Elastic constants of face-centered cubic and L12 Ni–Si alloys: Composition and temperature dependence. Metall. Mater. Trans. A. 2003;34:1863–1868. doi: 10.1007/s11661-003-0151-8. DOI

Fu C.L., Ye Y.Y., Yoo M.H. Theoretical investigation of the elastic constants and shear fault energies of Ni3Si. Philos. Mag. Lett. 1993;67:179–185. doi: 10.1080/09500839308240927. DOI

Iotova D., Kioussis N., Lim S.P. Electronic structure and elastic properties of the Ni3X (X = Mn, Al, Ga, Si, Ge) intermetallics. Phys. Rev. B. 1996;54:14413–14422. doi: 10.1103/PhysRevB.54.14413. PubMed DOI

Liu L., Chen L., Jiang Y., He C., Xu G., Wen Y. Temperature Effects on the Elastic Constants, Stacking Fault Energy and Twinnability of Ni3Si and Ni3Ge: A First-Principles Study. Crystals. 2018;8:364. doi: 10.3390/cryst8090364. DOI

Mouhat F., Coudert F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI

Černý M. Elastic stability of magnetic crystals under isotropic compression and tension. Mater. Sci. Eng. A. 2007;462:432–435. doi: 10.1016/j.msea.2006.02.458. DOI

Titrian H., Aydin U., Friák M., Ma D., Raabe D., Neugebauer J. Self-consistent Scale-bridging Approach to Compute the Elasticity of Multi-phase Polycrystalline Materials. MRS Proc. 2013;1524:mrsf12-1524-rr06-03. doi: 10.1557/opl.2013.41. DOI

Friák M., Counts W., Ma D., Sander B., Holec D., Raabe D., Neugebauer J. Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties. Materials. 2012;5:1853–1872. doi: 10.3390/ma5101853. DOI

Zhu L.F., Friák M., Lymperakis L., Titrian H., Aydin U., Janus A., Fabritius H.O., Ziegler A., Nikolov S., Hemzalová P., et al. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals. J. Mech. Behav. Biomed. Mater. 2013;20:296–304. doi: 10.1016/j.jmbbm.2013.01.030. PubMed DOI

Gaillac R., Pullumbi P., Coudert F.X. ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter. 2016;28:275201. doi: 10.1088/0953-8984/28/27/275201. PubMed DOI

Wolf D., Lutsko J.F. Structurally induced supermodulus effect in superlattices. Phys. Rev. Lett. 1988;60:1170–1173. doi: 10.1103/PhysRevLett.60.1170. PubMed DOI

Kluge M.D., Wolf D., Lutsko J.F., Phillpot S.R. Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation. J. Appl. Phys. 1990;67:2370–2379. doi: 10.1063/1.345533. DOI

Hughbanks T., Hoffmann R. Chains of trans-edge-sharing molybdenum octahedra: Metal-metal bonding in extended systems. J. Am. Chem. Soc. 1983;105:3528–3537. doi: 10.1021/ja00349a027. DOI

Bylander D.M., Kleinman L., Mednick K. Self-consistent energy bands and bonding of NiSi2. Phys. Rev. B. 1982;25:1090–1095. doi: 10.1103/PhysRevB.25.1090. DOI

Yoo M., Fu C., Horton J. Crack-tip dislocations and fracture behavior in Ni3Al and Ni3Si. Mater. Sci. Eng. A. 1994;176:431–437. doi: 10.1016/0921-5093(94)91011-1. DOI

Pang X.Y., Janisch R., Hartmaier A. Interplanar potential for tension-shear coupling at grain boundaries derived from ab initio calculations. Model. Simul. Mater. Sci. Eng. 2016;24:015007. doi: 10.1088/0965-0393/24/1/015007. DOI

Razumovskiy V.I., Ruban A., Razumovskii I., Lozovoi A., Butrim V., Vekilov Y. The effect of alloying elements on grain boundary and bulk cohesion in aluminum alloys: An ab initio study. Scr. Mater. 2011;65:926–929. doi: 10.1016/j.scriptamat.2011.08.014. DOI

Tahir A.M., Janisch R., Hartmaier A. Hydrogen embrittlement of a carbon segregated Σ 5(310)[001] symmetrical tilt grain boundary in α-Fe. Mater. Sci. Eng. A. 2014;612:462–467. doi: 10.1016/j.msea.2014.06.071. DOI

Tahir A.M., Janisch R., Hartmaier A. Ab initio calculation of traction separation laws for a grain boundary in molybdenum with segregated C impurites. Model. Simul. Mater. Sci. Eng. 2013;21:075005. doi: 10.1088/0965-0393/21/7/075005. DOI

Razumovskiy V.I., Vekilov Y.K., Razumovskii I.M., Ruban A.V., Butrim V.N., Mironenko V.N. Effect of alloying elements and impurities on interface properties in aluminum alloys. Phys. Solid State. 2011;53:2189–2193. doi: 10.1134/S1063783411110266. DOI

Hristova E., Janisch R., Drautz R., Hartmaier A. Solubility of carbon in α-iron under volumetric strain and close to the Σ5(310)[001] grain boundary: Comparison of DFT and empirical potential methods. Comput. Mater. Sci. 2011;50:1088–1096. doi: 10.1016/j.commatsci.2010.11.006. DOI

Janisch R., Ahmed N., Hartmaier A. Ab initio tensile tests of Al bulk crystals and grain boundaries: Universality of mechanical behavior. Phys. Rev. B. 2010;81:184108. doi: 10.1103/PhysRevB.81.184108. DOI

Razumovskiy V.I., Lozovoi A.Y., Razumovskii I.M. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater. 2015;82:369–377. doi: 10.1016/j.actamat.2014.08.047. DOI

Scheiber D., Razumovskiy V.I., Puschnig P., Pippan R., Romaner L. Ab initio description of segregation and cohesion of grain boundaries in W–25at.% Re alloys. Acta Mater. 2015;88:180–189. doi: 10.1016/j.actamat.2014.12.053. DOI

Janisch R., Elsässer C. Interstitial impurities at grain boundaries in metals: Insight from atomistic calculations. Int. J. Mater. Res. 2009;100:1488–1493. doi: 10.3139/146.110206. DOI

Janisch R., Elsässer C. Growth and mechanical properties of a MoC precipitate at a Mo grain boundary: An ab initio density functional theory study. Phys. Rev. B. 2008;77:094118. doi: 10.1103/PhysRevB.77.094118. DOI

Gemming S., Janisch R., Schreiber M., Spaldin N.A. Density-functional investigation of the (113)[-110] twin grain boundary in Co-doped anatase TiO2 and its influence on magnetism in dilute magnetic semiconductors. Phys. Rev. B. 2007;76:045204. doi: 10.1103/PhysRevB.76.045204. DOI

Janisch R., Elsässer C. Segregated light elements at grain boundaries in niobium and molybdenum. Phys. Rev. B. 2003;67:224101. doi: 10.1103/PhysRevB.67.224101. DOI

Šob M., Wang L.G., Vitek V. Local stability of higher-energy phases in metallic materials and its relation to the structure of extended defects. Comput. Mater. Sci. 1997;8:100–106. doi: 10.1016/S0927-0256(97)00022-0. DOI

Wang L.G., Šob M., Zhang Z.Y. Instability of higher-energy phases in simple and transition metals. J. Phys. Chem. Solids. 2003;64:863–872. doi: 10.1016/S0022-3697(02)00420-1. DOI

Šob M., Wang L.G., Vitek V. Ab initio calculation of the ideal tensile strength in copper and nickel aluminide. Kovove Mater. Met. Mater. 1998;36:145–152.

Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and Brittleness of Interfaces in Fe-Al Superalloy Nanocomposites under Multiaxial Loading: An ab initio and Atomistic Study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC

Černý M., Šesták P., Řehák P., Všianská M., Šob M. Ab initio tensile tests of grain boundaries in the fcc crystals of Ni and Co with segregated sp-impurities. Mater. Sci. Eng. A. 2016;669:218–225. doi: 10.1016/j.msea.2016.05.083. DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Quantum-Mechanical Study of Clean and Cr-Segregated Antiphase Boundaries in Fe3Al

. 2019 Nov 28 ; 12 (23) : . [epub] 20191128

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...