Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies

. 2018 Dec 15 ; 8 (12) : . [epub] 20181215

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30558300

Grantová podpora
16-24711S Grantová Agentura České Republiky
17-22139S Grantová Agentura České Republiky
CEITEC 2020, LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
IPMINFRA, LM2015069 Ministerstvo Školství, Mládeže a Tělovýchovy

We applied first-principles electronic structure calculations to study structural, thermodynamic and elastic properties of nanocomposites exhibiting nearly perfect match of constituting phases. In particular, two combinations of transition-metal disilicides and one pair of magnetic phases containing the Fe and Al atoms with different atomic ordering were considered. Regarding the disilicides, nanocomposites MoSi 2 /WSi 2 with constituents crystallizing in the tetragonal C11 b structure and TaSi 2 /NbSi 2 with individual phases crystallizing in the hexagonal C40 structure were simulated. Constituents within each pair of materials exhibit very similar structural and elastic properties and for their nanocomposites we obtained ultra-low (nearly zero) interface energy (within the error bar of our calculations, i.e., about 0.005 J/m 2 ). The interface energy was found to be nearly independent on the width of individual constituents within the nanocomposites and/or crystallographic orientation of the interfaces. As far as the nanocomposites containing Fe and Al were concerned, we simulated coherent superlattices formed by an ordered Fe 3 Al intermetallic compound and a disordered Fe-Al phase with 18.75 at.% Al, the α -phase. Both phases were structurally and elastically quite similar but the disordered α -phase lacked a long-range periodicity. To determine the interface energy in these nanocomposites, we simulated seven different distributions of atoms in the α -phase interfacing the Fe 3 Al intermetallic compound. The resulting interface energies ranged from ultra low to low values, i.e., from 0.005 to 0.139 J/m 2 . The impact of atomic distribution on the elastic properties was found insignificant but local magnetic moments of the iron atoms depend sensitively on the type and distribution of surrounding atoms.

Zobrazit více v PubMed

Yamaguchi M., Inui H., Ito K. High-temperature structural intermetallics. Acta Mater. 2000;48:307–322. doi: 10.1016/S1359-6454(99)00301-8. DOI

Umakoshi Y., Nakano T., Kishimoto K., Furuta D., Hagihara K., Azuma M. Strength and deformation mechanism of C40-based single crystal and polycrystalline silicides. Mater. Sci. Eng. A. 1999;261:113–121. doi: 10.1016/S0921-5093(98)01056-9. DOI

Petrovic J., Vasudevan A. Key developments in high temperature structural silicides. Mater. Sci. Eng. A. 1999;261:1–5. doi: 10.1016/S0921-5093(98)01043-0. DOI

Inui H., Moriwaki M., Yamaguchi M. Plastic deformation of single crystals of VSi2 and TaSi2with the C40 structure. Intermetallics. 1998;6:723–728. doi: 10.1016/S0966-9795(98)00045-4. DOI

Zhou Y., Zhang Z., Jin X., Ye G., Liu C. Fabrication and Composition Investigation of WSi2/MoSi2 Composite Powders Obtained by a Self-Propagating High-Temperature Synthesis Method. Arabian J. Sci. Eng. 2016;41:2583–2587. doi: 10.1007/s13369-016-2072-z. DOI

Deevi S.C. Self-propagating high-temperature synthesis of molybdenum disilicide. J. Mater. Sci. 1991;26:3343–3353. doi: 10.1007/BF01124683. DOI

Ke P., Yi M., Ran L. Reaction thermodynamics of MoSi2-WSi2 composites in the thermal explosion mode of SHS. Rare Met. Mater. Eng. 2006;35:554–558.

Zhang H., Chen P., Wang M., Liu X. Room-temperature mechanical properties of WSi2/MoSi2 composites. Rare Met. 2002;21:304–307.

Chen F., Xu J., Liu Y., Cai L. In situ reactive spark plasma sintering of WSi2/MoSi2 composites. Ceram. Int. 2016;42:11165–11169. doi: 10.1016/j.ceramint.2016.04.023. DOI

Zamani S., Bakhsheshi-Rad H.R., Kadir M.R.A., Shafiee M.R.M. Synthesis and kinetic study of (Mo,W)Si2-WSi2 nanocomposite by mechanical alloying. J. Alloys Compd. 2012;540:248–259. doi: 10.1016/j.jallcom.2012.06.072. DOI

Xu J., Wang Y., Weng B., Chen F. Preparation and Characterization of MoSi2/WSi2Composites from MASHSed Powder. Mater. Trans. 2015;56:313–316. doi: 10.2320/matertrans.M2014370. DOI

Kattner U., Burton B. Al-Fe (Aluminium-Iron) In: Okamoto H., editor. Phase Diagrams of Binary Iron Alloys. ASM Internationa; Materials Park, OH, USA: 1993. pp. 12–28.

Sauthoff G. Intermetallics. VCH Verlagsgesellschaft; Weinheim, Germany: 1995.

Liu C.T., Stringer J., Mundy J.N., Horton L.L., Angelini P. Ordered intermetallic alloys: An assessment. Intermetallics. 1997;5:579–596. doi: 10.1016/S0966-9795(97)00045-9. DOI

Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI

Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilib. 1995;16:209–222. doi: 10.1007/BF02667305. DOI

Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI

Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI

Sundman B., Ohnuma I., Dupin N., Kattner U.R., Fries S.G. An assessment of the entire Al-Fe system including D0(3) ordering. Acta Mater. 2009;57:2896–2908. doi: 10.1016/j.actamat.2009.02.046. DOI

Stein F., Palm M. Re-determination of transition temperatures in the Fe-Al system by differential thermal analysis. Int. J. Mater. Res. 2007;98:580–588. doi: 10.3139/146.101512. DOI

Palm M. Fe-Al materials for structural applications at high temperatures: Current research at MPIE. Int. J. Mater. Res. 2009;100:277–287. doi: 10.3139/146.110056. DOI

Watson R.E., Weinert M. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B. 1998;58:5981–5988. doi: 10.1103/PhysRevB.58.5981. DOI

Gonzales-Ormeno P., Petrilli H., Schon C. Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad. 2002;26:573. doi: 10.1016/S0364-5916(02)80009-8. DOI

Friák M., Neugebauer J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics. 2010;18:1316–1321. doi: 10.1016/j.intermet.2010.03.014. DOI

Amara H., Fu C.C., Soisson F., Maugis P. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Phys. Rev. B. 2010;81:174101. doi: 10.1103/PhysRevB.81.174101. DOI

Liu S., Duan S., Ma B. First-principles calculation of vibrational entropy for Fe-Al compounds. Phys. Rev. B. 1998;58:9705–9709.

Kulikov N.I., Postnikov A.V., Borstel G., Braun J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B. 1999;59:6824–6833. doi: 10.1103/PhysRevB.59.6824. DOI

Fähnle M., Drautz R., Lechermann F., Singer R., Diaz-Ortiz A., Dosch H. Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Phys. Status Solidi B-Basic Solid State Phys. 2005;242:1159–1173. doi: 10.1002/pssb.200440010. DOI

Friák M., Deges J., Krein R., Frommeyer G., Neugebauer J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics. 2010;18:1310. doi: 10.1016/j.intermet.2010.02.025. DOI

Kirklin S., Saal J.E., Hegde V.I., Wolverton C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 2016;102:125–135. doi: 10.1016/j.actamat.2015.09.016. DOI

Airiskallio E., Nurmi E., Heinonen M.H., Vayrynen I.J., Kokko K., Ropo M., Punkkinen M.P.J., Pitkanen H., Alatalo M., Kollar J., Johansson B., Vitos L. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010;52:3394–3404. doi: 10.1016/j.corsci.2010.06.019. DOI

Medvedeva N.I., Park M.S., Van Aken D.C., Medvedeva J.E. First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J. Alloy. Compd. 2014;582:475–482. doi: 10.1016/j.jallcom.2013.08.089. DOI

Čížek J., Lukáč F., Procházka I., Kužel R., Jirásková Y., Janičkovič D., Anwand W., Brauer G. Characterization of quenched-in vacancies in Fe-Al alloys. Physica B. 2012;407:2659–2664. doi: 10.1016/j.physb.2011.12.122. DOI

Ipser H., Semenova O., Krachler R. Intermetallic phases with DO3-structure: A statistical-thermodynamic model. J. Alloy. Compd. 2002;338:20–25. doi: 10.1016/S0925-8388(02)00177-9. DOI

Miháliková I., Slávik A., Friák M., Všianská M., Koutná N., Holec D., Šob M. NANOCON 2017 Conference Proceedings (9th International Conference on Nanomaterials—Research & Application, Brno, Oct. 18–20, 2017) Tanger Ltd.; Ostrava, Czech Republic: 2017. First-principles study of interface energies in Fe-Al-based superalloy nanocomposites; pp. 69–74.

Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and Brittleness of Interfaces in Fe-Al Superalloy Nanocomposites under Multiaxial Loading: An ab initio and Atomistic Study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC

Lechermann F., Welsch F., Elsässer C., Ederer C., Fähnle M., Sanchez J., Meyer B. Density-functional study of Fe3Al: LSDA versus GGA. Phys. Rev. B. 2002;65:132104. doi: 10.1103/PhysRevB.65.132104. DOI

Connetable D., Maugis P. First principle calculations of the kappa-Fe3AlC perovskite and iron-aluminium intermetallics. Intermetallics. 2008;16:345–352. doi: 10.1016/j.intermet.2007.09.011. DOI

Lechermann F., Fähnle M., Meyer B., Elsässer C. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study. Phys. Rev. B. 2004;69:165116. doi: 10.1103/PhysRevB.69.165116. DOI

Kellou A., Grosdidier T., Raulot J.M., Aourag H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi B-Basic Solid State Phys. 2008;245:750–755. doi: 10.1002/pssb.200743301. DOI

Jiraskova Y., Pizurova N., Titov A., Janickovic D., Friak M. Phase separation in Fe-Ti-Al alloy—Structural, magnetic, and Moessbauer study. J. Magn. Magn. Mater. 2018;468:91–99. doi: 10.1016/j.jmmm.2018.07.065. DOI

Wang K., Wang Y., Cheng Y. The Formation and Dynamic Evolution of Antiphase Domain Boundary in FeAl Alloy: Computational Simulation in Atomic Scale. Mater. Res. Ibero-Am. J. Mater. 2018;21:e20171048. doi: 10.1590/1980-5373-mr-2017-1048. DOI

Balagurov A.M., Bobrikov I.A., Sumnikov V.S., Golovin I.S. Antiphase domains or dispersed clusters? Neutron diffraction study of coherent atomic ordering in Fe3Al-type alloys. Acta Mater. 2018;153:45–52. doi: 10.1016/j.actamat.2018.04.015. DOI

Murakami Y., Niitsu K., Tanigaki T., Kainuma R., Park H.S., Shindo D. Magnetization amplified by structural disorder within nanometre-scale interface region. Nat. Commun. 2014;5:4133. doi: 10.1038/ncomms5133. PubMed DOI PMC

Oguma R., Matsumura S., Eguchi T. Kinetics of B2-and D03 type ordering and formation of domain structures in Fe-Al alloys. J. Phys. Cond. Matter. 2008;20:275225. doi: 10.1088/0953-8984/20/27/275225. PubMed DOI

Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI

Ceperley D.M., Alder B.J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980;45:566–569. doi: 10.1103/PhysRevLett.45.566. DOI

Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI

Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI

Zhou L., Holec D., Mayrhofer P.H. First-principles study of elastic properties of Cr-Al-N. J. Appl. Phys. 2013;113:043511. doi: 10.1063/1.4789378. DOI

Mayrhofer P.H., Fischer F.D., Boehm H.J., Mitterer C., Schneider J.M. Energetic balance and kinetics for the decomposition of supersaturated Ti1−xAlxN. Acta Mater. 2007;55:1441–1446. doi: 10.1016/j.actamat.2006.09.045. DOI

Wu L., Chen M., Li C., Zhou J., Shen L., Wang Y., Zhong Z., Feng M., Zhang Y., Han K., et al. Ferromagnetism and matrix-dependent charge transfer in strained LaMnO3-LaCoO3 superlattices. Mater. Res. Lett. 2018;6:501–507. doi: 10.1080/21663831.2018.1482840. DOI

Koutná N., Holec D., Friák M., Mayrhofer P.H., Šob M. Stability and elasticity of metastable solid solutions and superlattices in the MoN-TaN system: First-principles calculations. Mater. Des. 2018;144:310–322. doi: 10.1016/j.matdes.2018.02.033. DOI

Jiang M., Xiao H.Y., Peng S.M., Yang G.X., Liu Z.J., Zu X.T. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures. Sci. Rep. 2018;8:2012. doi: 10.1038/s41598-018-20155-0. PubMed DOI PMC

Wen Y.N., Gao P.F., Xia M.G., Zhang S.L. Half-metallic ferromagnetism prediction in MoS2-based two-dimensional superlattice from first-principles. Mod. Phys. Lett. B. 2018;32:1850098. doi: 10.1142/S0217984918500987. DOI

Friák M., Tytko D., Holec D., Choi P.P., Eisenlohr P., Raabe D., Neugebauer J. Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New J. Phys. 2015;17:093004. doi: 10.1088/1367-2630/17/9/093004. DOI

Dai Q., Eckern U., Schwingenschlog U. Effects of oxygen vacancies on the electronic structure of the (LaVO3)6/SrVO3 superlattice: A computational study. New J. Phys. 2018;20:073011. doi: 10.1088/1367-2630/aac486. DOI

Jiang M., Xiao H., Peng S., Qiao L., Yang G., Liu Z., Zu X. First-Principles Study of Point Defects in GaAs/AlAs Superlattice: the Phase Stability and the Effects on the Band Structure and Carrier Mobility. Nanoscale Res. Lett. 2018;13:301. doi: 10.1186/s11671-018-2719-7. PubMed DOI PMC

Chen H., Millis A.J., Marianetti C.A. Engineering Correlation Effects via Artificially Designed Oxide Superlattices. Phys. Rev. Lett. 2013;111:116403. doi: 10.1103/PhysRevLett.111.116403. PubMed DOI

Mottura A., Janotti A., Pollock T.M. A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co3(Al,W) Intermetallics. 2012;28:138–143. doi: 10.1016/j.intermet.2012.04.020. DOI

Rosengaard N., Skriver H. Ab-initio study of antiphase boundaries and stacking-faults in L12 and D022 compounds. Phys. Rev. B. 1994;50:4848–4858. doi: 10.1103/PhysRevB.50.4848. PubMed DOI

Torres-Pardo A., Gloter A., Zubko P., Jecklin N., Lichtensteiger C., Colliex C., Triscone J.M., Stephan O. Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale. Phys. Rev. B. 2011;84:220102. doi: 10.1103/PhysRevB.84.220102. DOI

Chawla V., Holec D., Mayrhofer P.H. Stabilization criteria for cubic AlN in TiN/AlN and CrN/AlN bi-layer systems. J. Phys. D. 2013;46:045305. doi: 10.1088/0022-3727/46/4/045305. DOI

Cooper V.R., Rabe K.M. Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices. Phys. Rev. B. 2009;79:180101. doi: 10.1103/PhysRevB.79.180101. DOI

Chen B., Zhang Q., Bernholc J. Si diffusion in GaAs and Si-induced interdiffusion in GaAs/AlAs superlattices. Phys. Rev. B. 1994;49:2985–2988. doi: 10.1103/PhysRevB.49.2985. PubMed DOI

Schmid U., Christensen N., Cardona M., Lukes F., Ploog K. Optical anisotropy in GaAs/AlSs(110) superlattices. Phys. Rev. B. 1992;45:3546–3551. doi: 10.1103/PhysRevB.45.3546. PubMed DOI

Gibson Q.D., Schoop L.M., Weber A.P., Ji H., Nadj-Perge S., Drozdov I.K., Beidenkopf H., Sadowski J.T., Fedorov A., Yazdani A., Valla T., Cava R.J. Termination-dependent topological surface states of the natural superlattice phase Bi4Se3. Phys. Rev. B. 2013;88:081108R. doi: 10.1103/PhysRevB.88.081108. DOI

Park C., Chang K. Structural and electronic-properties of GaP-AlP (001) superlattices. Phys. Rev. B. 1993;47:12709–12715. doi: 10.1103/PhysRevB.47.12709. PubMed DOI

Romanyuk O., Hannappel T., Grosse F. Atomic and electronic structure of GaP/Si(111), GaP/Si(110), and GaP/Si(113) interfaces and superlattices studied by density functional theory. Phys. Rev. B. 2013;88:115312. doi: 10.1103/PhysRevB.88.115312. DOI

Abdulsattar M.A. SiGe superlattice nanocrystal pure and doped with substitutional phosphorus single atom: Density functional theory study. Superlattices Microstruct. 2011;50:377–385. doi: 10.1016/j.spmi.2011.07.017. DOI

Botti S., Vast N., Reining L., Olevano V., Andreani L. Ab initio and semiempirical dielectric response of superlattices. Phys. Rev. B. 2004;70:045301. doi: 10.1103/PhysRevB.70.045301. PubMed DOI

Rondinelli J.M., Spaldin N.A. Electron-lattice instabilities suppress cuprate-like electronic structures in SrFeO3/OSrTiO3 superlattices. Phys. Rev. B. 2010;81:085109. doi: 10.1103/PhysRevB.81.085109. DOI

Titrian H., Aydin U., Friák M., Ma D., Raabe D., Neugebauer J. Self-consistent Scale-bridging Approach to Compute the Elasticity of Multi-phase Polycrystalline Materials. MRS Proc. 2013;1524:rr06. doi: 10.1557/opl.2013.41. DOI

Friák M., Counts W., Ma D., Sander B., Holec D., Raabe D., Neugebauer J. Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties. Materials. 2012;5:1853–1872. doi: 10.3390/ma5101853. DOI

Zhu L.F., Friák M., Lymperakis L., Titrian H., Aydin U., Janus A., Fabritius H.O., Ziegler A., Nikolov S., Hemzalová P., Raabe D., Neugebauer J. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals. J. Mech. Behav. Biomed. Mater. 2013;20:296–304. doi: 10.1016/j.jmbbm.2013.01.030. PubMed DOI

Nakamura M., Matsumoto S., Hirano T. Elastic constants of MoSi2and WSi2 single crystals. J. Mater. Sci. 1990;25:3309–3313. doi: 10.1007/BF00587691. DOI

Zhang H., Chen P., Yan J., Tang S. Fabrication and wear characteristics of MoSi2 matrix composite reinforced by WSi2and La2O3. Int. J. Refract. Met. Hard Mater. 2004;22:271–275. doi: 10.1016/j.ijrmhm.2004.09.002. DOI

Chu F., Ming L., Maloy S.A., Mitchell T.E., Migliori A., Garrett J. Single crystal elastic constants of NbSi2. Philos. Mag. B. 1995;71:373–382. doi: 10.1080/13642819508239040. DOI

Erturk E., Gurel T. Ab initio study of structural, elastic, and vibrational properties of transition-metal disilicides NbSi2 and TaSi2 in hexagonal C40 structure. Phys. B Cond. Matter. 2018;537:188–193. doi: 10.1016/j.physb.2018.01.070. DOI

Wan B., Xiao F., Zhang Y., Zhao Y., Wu L., Zhang J., Gou H. Theoretical study of structural characteristics, mechanical properties and electronic structure of metal (TM=V, Nb and Ta) silicides. J. Alloys Compd. 2016;681:412–420. doi: 10.1016/j.jallcom.2016.04.253. DOI

Moakher M., Norris A.N. The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J. Elast. 2006;85:215–263. doi: 10.1007/s10659-006-9082-0. DOI

Tasnádi F., Abrikosov I.A., Rogström L., Almer J., Johansson M.P., Oden M. Significant elastic anisotropy in Ti1-xAlxN alloys. Appl. Phys. Lett. 2010;97:231902. doi: 10.1063/1.3524502. DOI

Tasnádi F., Odén M., Abrikosov I. Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence. Phys. Rev. B. 2012;85:144112. doi: 10.1103/PhysRevB.85.144112. DOI

Von Pezold J., Dick A., Friák M., Neugebauer J. Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti. Phys. Rev. B. 2010;81:094203. doi: 10.1103/PhysRevB.81.094203. DOI

Holec D., Tasnádi F., Wagner P., Friák M., Neugebauer J., Mayrhofer P., Keckes J. Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grainscale interactions. Phys. Rev. B. 2014;90:184106. doi: 10.1103/PhysRevB.90.184106. DOI

Kou K., Yang Y., Ai Y., Chen Y., Kang M. Self-propagating high-temperature combustion synthesis of MoSi2-WSi2 composite. Rare Met. Mater. Eng. 2000;29:190–192.

Zhang Y., Zhang P., Ren J., Zhang L., Zhang J. SiC nanowire-toughened MoSi2-WSi2-SiC-Si multiphase coating for improved oxidation resistance of C C composites. Ceram. Int. 2016;42:12573–12580. doi: 10.1016/j.ceramint.2016.05.056. DOI

Ai Y., Cheng Y., Yang Y., Kang M., Liu C. Preparation and microstructure of WSi2/MoSi2composite heat element. Rare Met. Mater. Eng. 2005;34:962–965.

Xu J., Wu H., Li B. Synthesis of MoSi2/WSi2nanocrystalline powder by mechanical-assistant combustion synthesis method. Int. J. Refract. Met. Hard Mater. 2010;28:217–220. doi: 10.1016/j.ijrmhm.2009.10.001. DOI

Zunger A., Wei S., Ferreira L., Bernard J. Special quasirandom structures. Phys. Rev. Lett. 1990;65:353–356. doi: 10.1103/PhysRevLett.65.353. PubMed DOI

Li J., Wang C., Yao J., Yang S., Kang Y., Shi Z., Liu X. Experimental investigation of phase equilibria in the Nb-Si-Ta ternary system. Int. J. Mater. Res. 2016;107:1112–1120. doi: 10.3139/146.111442. DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...