The surface reactivity of iron oxide nanoparticles as a potential hazard for aquatic environments: A study on Daphnia magna adults and embryos

. 2018 Aug 29 ; 8 (1) : 13017. [epub] 20180829

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30158568
Odkazy

PubMed 30158568
PubMed Central PMC6115473
DOI 10.1038/s41598-018-31483-6
PII: 10.1038/s41598-018-31483-6
Knihovny.cz E-zdroje

Nano-ecotoxicology is extensively debated and nanomaterial surface reactivity is an emerging topic. Iron oxide nanoparticles are widely applied, with organic or inorganic coatings for stabilizing their suspensions. Surface active maghemite nanoparticles (SAMNs) are the unique example of naked iron oxide displaying high colloidal and structural stability in water and chemical reactivity. The colloidal behavior of SAMNs was studied as a function of the medium salinity and protocols of acute and chronic toxicity on Daphnia magna were consequently adapted. SAMN distribution into the crustacean, intake/depletion rates and swimming performances were evaluated. No sign of toxicity was detected in two model organisms from the first trophic level (P. subcapitata and L. minor). In D. magna, acute EC50 values of SAMN was assessed, while no sub-lethal effects were observed and the accumulation of SAMNs in the gut appeared as the sole cause of mortality. Fast depuration and absence of delayed effects indicated no retention of SAMNs within the organism. In spite of negligible toxicity on D. magna adults, SAMN surface reactivity was responsible of membrane bursting and lethality on embryos. The present study offers a contribution to the nascent knowledge concerning the impact of nanoparticle surface reactivity on biological interfaces.

Zobrazit více v PubMed

Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006;32:967–976. doi: 10.1016/j.envint.2006.06.014. PubMed DOI

Choi JE, et al. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat. Toxicol. 2010;100:151–159. doi: 10.1016/j.aquatox.2009.12.012. PubMed DOI

Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquat. Toxicol. 2010;100:218–228. doi: 10.1016/j.aquatox.2010.02.019. PubMed DOI

Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkin TA. Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating, and composition. Environ. Health Perspect. 2011;119:37–44. doi: 10.1289/ehp.1002337. PubMed DOI PMC

Chen X, et al. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011;133:3693–3695. doi: 10.1021/ja110313d. PubMed DOI

Baun A, Hartmann NB, Grieger K, Kusk KO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology. 2008;17:387–395. doi: 10.1007/s10646-008-0208-y. PubMed DOI

Shaw BJ, Handy RD. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ. Int. 2011;37:1083–1097. doi: 10.1016/j.envint.2011.03.009. PubMed DOI

Baker TJ, Tyler CR, Galloway TS. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ. Pollut. 2014;186:257–271. doi: 10.1016/j.envpol.2013.11.014. PubMed DOI

Corsi I, et al. Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment. ACS Nano. 2014;8:9694–9709. doi: 10.1021/nn504684k. PubMed DOI

Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 2008;27:1972–1978. doi: 10.1897/08-002.1. PubMed DOI

Perry, S. F. & Laurent, P. Environmental effects on fish gill structure and function. In Fish ecophysiology (eds Rankin, J. C. & Jensen, F. B.) 231–264 (Chapman & Hall, 1993).

Li H, et al. Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol. Environ. 2009;72:684–692. doi: 10.1016/j.ecoenv.2008.09.027. PubMed DOI

Yeo M-K, Kang M. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull. Korean Chem. Soc. 2008;29:1179–1184. doi: 10.5012/bkcs.2008.29.6.1179. DOI

Kovrižnych JA, et al. Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages-comparative study. Interdiscip. Toxicol. 2013;6:67–73. doi: 10.2478/intox-2013-0012. PubMed DOI PMC

Merrifield DL, et al. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio) Environ. Pollut. 2013;174:157–163. doi: 10.1016/j.envpol.2012.11.017. PubMed DOI

Petersen S, Barcikowski S. In situ bioconjugation: single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv. Funct. Mater. 2009;19:1167–1172. doi: 10.1002/adfm.200801526. DOI

Wiesner MR, et al. Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009;43:6458–6462. doi: 10.1021/es803621k. PubMed DOI

Hansen SF, Larsen BH, Olsen SI, Baun A. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology. 2007;1:243–250. doi: 10.1080/17435390701727509. DOI

Stone, V. et al. Engineered nanoparticles: review of health and environmental safety (ENRHES), http://www.safenano.org/media/109923/ENRHES-Final%20version.pdf (2010).

Petersen EJ, et al. Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environ. Sci. Technol. 2015;49:9532–9547. doi: 10.1021/acs.est.5b00997. PubMed DOI

Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 2012;438:225–232. doi: 10.1016/j.scitotenv.2012.08.066. PubMed DOI

Anderson MA, Morel FMM, Guillard RLL. Growth limitation of a coastal diatom by low zinc ion activity. Nature. 1978;276:70–71. doi: 10.1038/276070a0. DOI

Paquin PR, et al. The biotic ligand model: a historical overview. Comp. Biochem. Physiol. 2002;133:3–35. PubMed

Luoma SN, Rainbow PS. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ. Sci. Technol. 2005;39:1921–1931. doi: 10.1021/es048947e. PubMed DOI

Buffle J, Wilkinson KJ, van Leeuwen HP. Chemodynamics and bioavailability in natural waters: bioavailability of various aquatic compounds is significantly dependent on the fundamentals of physical chemistry. Environ. Sci. Technol. 2009;43:7170–7174. doi: 10.1021/es9013695. PubMed DOI

Simkó M, Nosske D, Kreyling WG. Metrics, dose, and dose concept: the need for a proper dose concept in the risk assessment of nanoparticles. Int. J. Environ. Res. Public Health. 2014;11:4026–4048. doi: 10.3390/ijerph110404026. PubMed DOI PMC

Quik JTK, Vonk JA, Hansen SF, Baun A. Van De Meent, D. How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ. Int. 2011;37:1068–1077. doi: 10.1016/j.envint.2011.01.015. PubMed DOI

Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Smagghe G, Janssen CR. Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ. Pollut. 2011;159:970–976. doi: 10.1016/j.envpol.2010.12.010. PubMed DOI

Van Hoecke K, De Schamphelaere KAC, der Meeren P, Lucas S, Janssen CR. Ecotoxicity of silica nanoparticles to the green alga pseudokirchneriella subcapitata: importance of surface area. Environ. Toxicol. Chem. 2008;27:1948–1957. doi: 10.1897/07-634.1. PubMed DOI

Arvidsson R, Molander S, Sanden BA, Hassellov M. Challenges in exposure modeling of nanoparticles in aquatic environments. Hum. Ecol. Risk Assess. 2011;17:245–262. doi: 10.1080/10807039.2011.538639. DOI

Nel A, et al. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2013;46:607–621. doi: 10.1021/ar300022h. PubMed DOI PMC

Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021. doi: 10.1016/j.biomaterials.2004.10.012. PubMed DOI

Wu W, He QG, Jiang CZ. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008;3:397–415. doi: 10.1007/s11671-008-9174-9. PubMed DOI PMC

Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012;112:5818–5878. doi: 10.1021/cr300068p. PubMed DOI

Portet D, Denizot B, Rump E, Lejeune JJ, Jallet P. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J. Colloid Interface Sci. 2001;238:37–42. doi: 10.1006/jcis.2001.7500. PubMed DOI

Kreller DI, Gibson G, Novak W, van Loon GW, Horton JH. Competitive adsorption of phosphate and carboxylate with natural organic matter on hydrous iron oxides as investigated by chemical force microscopy. Colloids Surf. A. 2003;212:249–264. doi: 10.1016/S0927-7757(02)00325-4. DOI

Xiao L, et al. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano. 2011;5:6315–6324. doi: 10.1021/nn201348s. PubMed DOI

Maynard AD. Navigating the risk landscape. Nat. Natotech. 2016;11:211–212. doi: 10.1038/nnano.2016.28. PubMed DOI

Skopalik J, et al. Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist - an initial in vitro study. Int. J. Nanomedicine. 2014;9:5355–5372. doi: 10.2147/IJN.S66986. PubMed DOI PMC

Venerando R, et al. Magnetic nanoparticles with covalently bound self-assembled protein corona for advanced biomedical applications. J. Phys. Chem. C. 2013;117:20320–20331. doi: 10.1021/jp4068137. DOI

Magro M, et al. A magnetically drivable nanovehicle for curcumin with antioxidant capacity and MRI relaxation properties. Chem.–Eur. J. 2014;20:11913–11920. doi: 10.1002/chem.201402820. PubMed DOI

Magro M, et al. Covalently bound DNA on naked iron oxide nanoparticles: intelligent colloidal nano-vector for cell transfection. Biochim. Biophys. Acta - General Subjects. 2017;1861:2802–2810. doi: 10.1016/j.bbagen.2017.07.025. PubMed DOI

Seda J, Petrusek A. Daphnia as a model organism in limnology and aquatic biology: introductory remarks. J. Limnol. 2011;70:337–344. doi: 10.4081/jlimnol.2011.337. DOI

Zutic, V., Svetlicic, V. Interfacial processes. In Handbook of environmental chemistry vol. 5 Part D (ed. Wangersky, P.) 149–165 (Springer-Verlag, 2000).

Magro M, Baratella D, Bonaiuto E, de Almeida Roger J, Vianello F. New perspectives on biomedical applications of iron oxide nanoparticles. Curr. Med. Chem. 2018;25:540–555. doi: 10.2174/0929867324666170616102922. PubMed DOI

Magro M, et al. Enlightening mineral iron sensing in Pseudomonas fluorescens by surface active maghemite nanoparticles: involvement of the OprF porin. Biochim. Biophys. Acta. 2016;1860:2202–2210. doi: 10.1016/j.bbagen.2016.05.007. PubMed DOI

Baalousha M, et al. The concentration-dependent behaviour of nanoparticles. Environ. Chem. 2016;13:1–3. doi: 10.1071/EN15142. DOI

Baalousha, M., Lead, J. R., von der Kammer, F., Hofmann, T. Natural colloids and nanoparticles in aquatic and terrestrial environments. In Environmental and human health impacts of nanotechnology (eds Lead, J. R. & Smith E.) 109-162 (Wiley, 2009).

Hartmann NB, et al. Algal testing of titanium dioxide nanoparticles - testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology. 2010;269:190–197. doi: 10.1016/j.tox.2009.08.008. PubMed DOI

Hartmann NB, et al. Techniques and protocols for dispersing nanoparticle powders in aqueous media - is there a rationale for harmonization? J. Toxicol. Environ. Health Part B. 2015;18:299–326. doi: 10.1080/10937404.2015.1074969. PubMed DOI

Brinch A, Hansen SF, Hartmann NB, Baun A. EU regulation of nanobiocides: challenges in implementing the Biocidal Product Regulation (BPR) Nanomaterials. 2016;6:33. doi: 10.3390/nano6020033. PubMed DOI PMC

Klüttgen B, Dülmer U, Engels M, Ratte HT. ADaM, an artificial freshwater for the culture of zooplankton. Water Res. 1994;28:743–746. doi: 10.1016/0043-1354(94)90157-0. DOI

Lucas IT, Durand-Vidal S, Dubois E, Chevalet J, Turq P. Surface charge density of maghemite nanoparticles:  role of electrostatics in the proton exchange. J. Phys. Chem. C. 2007;111:18568–18576. doi: 10.1021/jp0743119. DOI

Gu C, Karthikeyan KG. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol. 2005;39:2660–2667. doi: 10.1021/es048603o. PubMed DOI

Von der Kammer F, Ottofuelling S, Hofmann T. Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. Environ. Pollut. 2010;158:3472–3481. doi: 10.1016/j.envpol.2010.05.007. PubMed DOI

Gao L, Zhang Q. Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticle. Scr. Mater. 2001;44:1195–1198. doi: 10.1016/S1359-6462(01)00681-9. DOI

Pfeiffer C, et al. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J. R. Soc. Interface. 2014;11:20130931. doi: 10.1098/rsif.2013.0931. PubMed DOI PMC

Hsu J-P, Liu B-T. Critical coagulation concentration of a colloidal suspension at high particle concentrations. J. Phys. Chem. B. 1998;102:334–337. doi: 10.1021/jp971817q. DOI

Hu J-D, et al. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci. Total Environ. 2010;408:3477–3489. doi: 10.1016/j.scitotenv.2010.03.033. PubMed DOI

Magro M, et al. Colloidal Surface Active Maghemite Nanoparticles for biologically safe CrVI remediation: from core-shell nanostructures to pilot plant development. Chem. Eur. J. 2016;22:14219–14226. doi: 10.1002/chem.201600544. PubMed DOI

Persoone G, et al. Review on the acute Daphnia magna toxicity test - evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowl. Manag. Aquat. Ecosyst. 2009;393:01. doi: 10.1051/kmae/2009012. DOI

OECD Guidance document on aquatic toxicity testing of difficult substances and mixtures, http://www.oecd-ilibrary.org/docserver/download/9750231e.pdf?expires=1519168656&id=id&accname=guest&checksum=833552EB7EF6C0A54EE2E165898FDAA3 (2000).

Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A. NanoE-Tox: new and in-depth database concerning ecotoxicity of nanomaterials. Beilstein J. Nanotechnol. 2015;6:1788–1804. doi: 10.3762/bjnano.6.183. PubMed DOI PMC

Artells E, et al. Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species. Plos One. 2013;8:e71260. doi: 10.1371/journal.pone.0071260. PubMed DOI PMC

Dabrunz A, et al. Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. Plos One. 2011;6:e20112. doi: 10.1371/journal.pone.0020112. PubMed DOI PMC

Baalousha M, et al. Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends. Environ. Sci. Nano. 2016;3:323–345. doi: 10.1039/C5EN00207A. DOI

González-Andrés V, et al. Acute ecotoxicity of coated colloidal goethite nanoparticles on Daphnia magna: evaluating the influence of exposure approaches. Sci. Total Environ. 2017;609:172–179. doi: 10.1016/j.scitotenv.2017.07.047. PubMed DOI

Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF. A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ. Toxicol. Chem. 2009;28:2142–2149. doi: 10.1897/08-559.1. PubMed DOI

Feswick A, Griffitt RJ, Siebein K, Barber DD. Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization. Aquat. Toxicol. 2013;130:210–218. doi: 10.1016/j.aquatox.2013.01.002. PubMed DOI

Scanlan LD, et al. Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano. 2013;7:10681–10694. doi: 10.1021/nn4034103. PubMed DOI PMC

Gaiser BK, et al. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ. Toxicol. Chem. 2012;31:144–154. doi: 10.1002/etc.703. PubMed DOI

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Kwon D, Nho HW, Yoon TH. Transmission electron microscopy and scanning transmission X-ray microscopy studies on the bioaccumulation and tissue level absorption of TiO2 nanoparticles in Daphnia magna. J. Nanosci. Nanotechnol. 2015;15:4229–4238. doi: 10.1166/jnn.2015.9695. PubMed DOI

OECD Ecotoxicity and environmental fate of manufactured nanomaterials: test guidelines, http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2014)1/ADD&doclanguage=en (2014).

Geller W, Muller H. The filtration apparatus of cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia. 1981;49:316–321. doi: 10.1007/BF00347591. PubMed DOI

Gillis PL, Chow-Fraser P, Ranville JF, Ross PE, Wood CM. Daphnia need to be gut-cleared too: the effect of exposure to and ingestion of metal-contaminated sediment on the gut-clearance patterns of D. magna. Aquat. Toxicol. 2005;71:143–154. doi: 10.1016/j.aquatox.2004.10.016. PubMed DOI

Song L, Vijver MG, De Snoo GR, Peijnenburg WJ. Assessing toxicity of copper nanoparticles across five cladoceran species. Environ. Toxicol. Chem. 2015;8:1863–1869. doi: 10.1002/etc.3000. PubMed DOI

Gophen M, Geller W. Filter mesh size and food particle uptake by Daphnia. Oecologia. 1984;64:408–412. doi: 10.1007/BF00379140. PubMed DOI

Skjolding LM, et al. A critical review of aquatic ecotoxicity testing of nanoparticles - the quest for disclosing nanoparticle effects. Angew. Chem. Int. Ed. 2016;55:15224–15239. doi: 10.1002/anie.201604964. PubMed DOI PMC

Burns CW. Relation between filtering rate, temperature, and body size in 4 species of Daphnia. Limnol. Oceanogr. 1969;14:693–700. doi: 10.4319/lo.1969.14.5.0693. DOI

Sørensen SN, Holten Lgtzhøft H-C, Rasmussen R, Baun A. Acute and chronic effects from pulse exposure of D. magna to silver and copper oxide nanoparticles. Aquat. Toxicol. 2016;180:209–217. doi: 10.1016/j.aquatox.2016.10.004. PubMed DOI

Lovern SB, Strickler JR, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (Titanium Dioxide, Nano-C60, and C60HxC70Hx) Environ. Sci. Technol. 2007;41:4465–4470. doi: 10.1021/es062146p. PubMed DOI PMC

Pirow R, Wollinger F, Paul RJ. The sites of respiratory gas exchange in the planktonic crustacean Daphnia magna: an in vivo study employing blood haemoglobin as an internal oxygen probe. J. Exp. Biol. 1999;202:3089–3099. PubMed

Seidl MD, Pirow R, Paul RJ. Water fleas (Daphnia magna) provide a separate ventilatory mechanism for their brood. Zoology. 2002;105:15–23. doi: 10.1078/0944-2006-00050. PubMed DOI

OECD Guidelines for the testing of chemicals, Guideline n. 211, Daphnia magna reproduction test, http://www.oecd-ilibrary.org/docserver/download/9712171e.pdf?expires=1516284153&id=id&accname=guest&checksum=2A8DCB37411229B22AE11EAC9439CE5F (2012).

Kast-Hutscheson K, Rider CV, Leblanc GA. The fungicide propiconazole interferes with embryonic development of the crustacean Daphnia magna. Environ. Toxicol. Chem. 2001;20:502–509. doi: 10.1897/1551-5028(2001)020<0502:TFPIWE>2.0.CO;2. PubMed DOI

Obreshkove V, Fraser AW. Growth and differentiation of Daphnia magna eggs in vitro. Biol. Bull. 1940;78:428–436. doi: 10.2307/1537664. DOI

Bodar CWM, Zee AVD, Voogt PA, Wynne H, Zandee DI. Toxicity of heavy metals to early life stages of Daphnia magna. Ecotoxicol. Environ. Saf. 1989;17:333–338. doi: 10.1016/0147-6513(89)90054-7. PubMed DOI

Putman A, Martin-Creuzburg D, Panis B, De Meester L. A. comparative analysis of the fatty acid composition of sexual and asexual eggs of Daphnia magna and its plasticity as a function of food quality. J. Plankton Res. 2015;37:752–763. doi: 10.1093/plankt/fbv043. DOI

Magro M, et al. Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome. Anal. Bioanal. Chem. 2018;410:2949–2959. doi: 10.1007/s00216-018-0976-z. PubMed DOI

George S, et al. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano. 2012;6:3745–3759. doi: 10.1021/nn204671v. PubMed DOI PMC

Von Moos N, Slaveykova VI. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae – state of the art and knowledge gaps. Nanotoxicology. 2014;8:605–630. doi: 10.3109/17435390.2013.809810. PubMed DOI

Hu X, Li D, Gao Y, Mu L, Zhou Q. Knowledge gaps between nanotoxicological research and nanomaterial safety. Environ. Int. 2016;94:8–23. doi: 10.1016/j.envint.2016.05.001. PubMed DOI

Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 2012;14:1109–1119. doi: 10.1007/s11051-012-1109-9. DOI

Pietroiusti, A., Stockmann-Juvala, H., Lucaroni, F. & Savolainen, K. Nanomaterial exposure, toxicity, and impact on human health. WIREs Nanomed. Nanobiotechnol., e1513 (2018). PubMed

Kägi R, et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 2008;156:233–239. doi: 10.1016/j.envpol.2008.08.004. PubMed DOI

Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing. Environ. Sci. Technol. 2009;43:8113–8118. doi: 10.1021/es9018332. PubMed DOI

Mackevica A, Olsson ME, Hansen SF. Silver nanoparticle release from commercially available plastic food containers into food simulants. J. Nanopart. Res. 2016;18:1–11. doi: 10.1007/s11051-015-3313-x. DOI

Grieger KD, et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J. Contam. Hydrol. 2010;118:165–183. doi: 10.1016/j.jconhyd.2010.07.011. PubMed DOI

Ko KS, Kong IC. Influence of incubation conditions on the nanoparticles toxicity based on seed germination and bacterial bioluminescence. J. Nanosci. Nanotechnol. 2017;17:2382–2389. doi: 10.1166/jnn.2017.13098. PubMed DOI

European Parliament and Council Regulation concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency (ECHA), http://data.europa.eu/eli/reg/2006/1907/oj (2006).

Magro, M., Valle, G., Russo, U., Nodari, L. & Vianello, F. Maghemite nanoparticles and method for preparing thereof. US patent 8, 980, 218 (2015), European patent EP2596506 (2014).

Magro M, et al. Charge binding of rhodamine derivative to OH− stabilized nanomaghemite: universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomater. 2012;8:2068–2076. doi: 10.1016/j.actbio.2012.02.005. PubMed DOI

Magro M, et al. Avidin functionalized maghemite nanoparticles and their application for recombinant human biotinyl-SERCA purification. Langmuir. 2012;28:15392–15401. doi: 10.1021/la303148u. PubMed DOI

Nichols, H. W. Growth media-freshwater in Handbook of phycological methods–culture methods and growth measurements, (ed. Stein J. R.) 7–24 (Cambridge University Press, 1973).

OECD Guidelines for the testing of chemicals, Guideline n. 202, Daphnia sp. acute immobilisation test, http://www.oecd-ilibrary.org/docserver/download/9720201e.pdf?expires=1516283434&id=id&accname=guest&checksum=4F6F244A4DED132746FE7F8BBAD3FDB4 (2004).

LeBlanc GA, Mu X, Rider CV. Embryotoxicity of the alkylphenol degradation product 4-nonylphenol to the crustacean Daphnia magna. Environ. Health Perspect. 2000;108:1133–1138. doi: 10.1289/ehp.001081133. PubMed DOI PMC

Code of Federal Regulations US-EPA Protection of the environment - environmental effects testing guidelines, subpart b aquatic guidelines, algal Acute toxicity test, part 797.1050 (2005).

OECD Guidelines for the testing of chemicals, Guideline n. 221, Lemna sp. growth inhibition test, http://www.oecd-ilibrary.org/docserver/download/9722101e.pdf?expires=1516285231&id=id&accname=guest&checksum=12306D3DC6B831A23ACA50191511CC04 (2006).

Hamilton MA, Russo RC, Thurston RV. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1977;11:714–719. doi: 10.1021/es60130a004. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...