The surface reactivity of iron oxide nanoparticles as a potential hazard for aquatic environments: A study on Daphnia magna adults and embryos
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30158568
PubMed Central
PMC6115473
DOI
10.1038/s41598-018-31483-6
PII: 10.1038/s41598-018-31483-6
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- biotest MeSH
- chemické látky znečišťující vodu toxicita MeSH
- Daphnia účinky léků fyziologie MeSH
- embryo nesavčí účinky léků fyziologie MeSH
- kovové nanočástice toxicita MeSH
- lokomoce účinky léků MeSH
- železité sloučeniny toxicita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- ferric oxide MeSH Prohlížeč
- železité sloučeniny MeSH
Nano-ecotoxicology is extensively debated and nanomaterial surface reactivity is an emerging topic. Iron oxide nanoparticles are widely applied, with organic or inorganic coatings for stabilizing their suspensions. Surface active maghemite nanoparticles (SAMNs) are the unique example of naked iron oxide displaying high colloidal and structural stability in water and chemical reactivity. The colloidal behavior of SAMNs was studied as a function of the medium salinity and protocols of acute and chronic toxicity on Daphnia magna were consequently adapted. SAMN distribution into the crustacean, intake/depletion rates and swimming performances were evaluated. No sign of toxicity was detected in two model organisms from the first trophic level (P. subcapitata and L. minor). In D. magna, acute EC50 values of SAMN was assessed, while no sub-lethal effects were observed and the accumulation of SAMNs in the gut appeared as the sole cause of mortality. Fast depuration and absence of delayed effects indicated no retention of SAMNs within the organism. In spite of negligible toxicity on D. magna adults, SAMN surface reactivity was responsible of membrane bursting and lethality on embryos. The present study offers a contribution to the nascent knowledge concerning the impact of nanoparticle surface reactivity on biological interfaces.
Zobrazit více v PubMed
Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006;32:967–976. doi: 10.1016/j.envint.2006.06.014. PubMed DOI
Choi JE, et al. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat. Toxicol. 2010;100:151–159. doi: 10.1016/j.aquatox.2009.12.012. PubMed DOI
Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquat. Toxicol. 2010;100:218–228. doi: 10.1016/j.aquatox.2010.02.019. PubMed DOI
Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkin TA. Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating, and composition. Environ. Health Perspect. 2011;119:37–44. doi: 10.1289/ehp.1002337. PubMed DOI PMC
Chen X, et al. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011;133:3693–3695. doi: 10.1021/ja110313d. PubMed DOI
Baun A, Hartmann NB, Grieger K, Kusk KO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology. 2008;17:387–395. doi: 10.1007/s10646-008-0208-y. PubMed DOI
Shaw BJ, Handy RD. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ. Int. 2011;37:1083–1097. doi: 10.1016/j.envint.2011.03.009. PubMed DOI
Baker TJ, Tyler CR, Galloway TS. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ. Pollut. 2014;186:257–271. doi: 10.1016/j.envpol.2013.11.014. PubMed DOI
Corsi I, et al. Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment. ACS Nano. 2014;8:9694–9709. doi: 10.1021/nn504684k. PubMed DOI
Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 2008;27:1972–1978. doi: 10.1897/08-002.1. PubMed DOI
Perry, S. F. & Laurent, P. Environmental effects on fish gill structure and function. In Fish ecophysiology (eds Rankin, J. C. & Jensen, F. B.) 231–264 (Chapman & Hall, 1993).
Li H, et al. Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol. Environ. 2009;72:684–692. doi: 10.1016/j.ecoenv.2008.09.027. PubMed DOI
Yeo M-K, Kang M. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull. Korean Chem. Soc. 2008;29:1179–1184. doi: 10.5012/bkcs.2008.29.6.1179. DOI
Kovrižnych JA, et al. Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages-comparative study. Interdiscip. Toxicol. 2013;6:67–73. doi: 10.2478/intox-2013-0012. PubMed DOI PMC
Merrifield DL, et al. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio) Environ. Pollut. 2013;174:157–163. doi: 10.1016/j.envpol.2012.11.017. PubMed DOI
Petersen S, Barcikowski S. In situ bioconjugation: single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv. Funct. Mater. 2009;19:1167–1172. doi: 10.1002/adfm.200801526. DOI
Wiesner MR, et al. Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009;43:6458–6462. doi: 10.1021/es803621k. PubMed DOI
Hansen SF, Larsen BH, Olsen SI, Baun A. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology. 2007;1:243–250. doi: 10.1080/17435390701727509. DOI
Stone, V. et al. Engineered nanoparticles: review of health and environmental safety (ENRHES), http://www.safenano.org/media/109923/ENRHES-Final%20version.pdf (2010).
Petersen EJ, et al. Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environ. Sci. Technol. 2015;49:9532–9547. doi: 10.1021/acs.est.5b00997. PubMed DOI
Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 2012;438:225–232. doi: 10.1016/j.scitotenv.2012.08.066. PubMed DOI
Anderson MA, Morel FMM, Guillard RLL. Growth limitation of a coastal diatom by low zinc ion activity. Nature. 1978;276:70–71. doi: 10.1038/276070a0. DOI
Paquin PR, et al. The biotic ligand model: a historical overview. Comp. Biochem. Physiol. 2002;133:3–35. PubMed
Luoma SN, Rainbow PS. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ. Sci. Technol. 2005;39:1921–1931. doi: 10.1021/es048947e. PubMed DOI
Buffle J, Wilkinson KJ, van Leeuwen HP. Chemodynamics and bioavailability in natural waters: bioavailability of various aquatic compounds is significantly dependent on the fundamentals of physical chemistry. Environ. Sci. Technol. 2009;43:7170–7174. doi: 10.1021/es9013695. PubMed DOI
Simkó M, Nosske D, Kreyling WG. Metrics, dose, and dose concept: the need for a proper dose concept in the risk assessment of nanoparticles. Int. J. Environ. Res. Public Health. 2014;11:4026–4048. doi: 10.3390/ijerph110404026. PubMed DOI PMC
Quik JTK, Vonk JA, Hansen SF, Baun A. Van De Meent, D. How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ. Int. 2011;37:1068–1077. doi: 10.1016/j.envint.2011.01.015. PubMed DOI
Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Smagghe G, Janssen CR. Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ. Pollut. 2011;159:970–976. doi: 10.1016/j.envpol.2010.12.010. PubMed DOI
Van Hoecke K, De Schamphelaere KAC, der Meeren P, Lucas S, Janssen CR. Ecotoxicity of silica nanoparticles to the green alga pseudokirchneriella subcapitata: importance of surface area. Environ. Toxicol. Chem. 2008;27:1948–1957. doi: 10.1897/07-634.1. PubMed DOI
Arvidsson R, Molander S, Sanden BA, Hassellov M. Challenges in exposure modeling of nanoparticles in aquatic environments. Hum. Ecol. Risk Assess. 2011;17:245–262. doi: 10.1080/10807039.2011.538639. DOI
Nel A, et al. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2013;46:607–621. doi: 10.1021/ar300022h. PubMed DOI PMC
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021. doi: 10.1016/j.biomaterials.2004.10.012. PubMed DOI
Wu W, He QG, Jiang CZ. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008;3:397–415. doi: 10.1007/s11671-008-9174-9. PubMed DOI PMC
Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012;112:5818–5878. doi: 10.1021/cr300068p. PubMed DOI
Portet D, Denizot B, Rump E, Lejeune JJ, Jallet P. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J. Colloid Interface Sci. 2001;238:37–42. doi: 10.1006/jcis.2001.7500. PubMed DOI
Kreller DI, Gibson G, Novak W, van Loon GW, Horton JH. Competitive adsorption of phosphate and carboxylate with natural organic matter on hydrous iron oxides as investigated by chemical force microscopy. Colloids Surf. A. 2003;212:249–264. doi: 10.1016/S0927-7757(02)00325-4. DOI
Xiao L, et al. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano. 2011;5:6315–6324. doi: 10.1021/nn201348s. PubMed DOI
Maynard AD. Navigating the risk landscape. Nat. Natotech. 2016;11:211–212. doi: 10.1038/nnano.2016.28. PubMed DOI
Skopalik J, et al. Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist - an initial in vitro study. Int. J. Nanomedicine. 2014;9:5355–5372. doi: 10.2147/IJN.S66986. PubMed DOI PMC
Venerando R, et al. Magnetic nanoparticles with covalently bound self-assembled protein corona for advanced biomedical applications. J. Phys. Chem. C. 2013;117:20320–20331. doi: 10.1021/jp4068137. DOI
Magro M, et al. A magnetically drivable nanovehicle for curcumin with antioxidant capacity and MRI relaxation properties. Chem.–Eur. J. 2014;20:11913–11920. doi: 10.1002/chem.201402820. PubMed DOI
Magro M, et al. Covalently bound DNA on naked iron oxide nanoparticles: intelligent colloidal nano-vector for cell transfection. Biochim. Biophys. Acta - General Subjects. 2017;1861:2802–2810. doi: 10.1016/j.bbagen.2017.07.025. PubMed DOI
Seda J, Petrusek A. Daphnia as a model organism in limnology and aquatic biology: introductory remarks. J. Limnol. 2011;70:337–344. doi: 10.4081/jlimnol.2011.337. DOI
Zutic, V., Svetlicic, V. Interfacial processes. In Handbook of environmental chemistry vol. 5 Part D (ed. Wangersky, P.) 149–165 (Springer-Verlag, 2000).
Magro M, Baratella D, Bonaiuto E, de Almeida Roger J, Vianello F. New perspectives on biomedical applications of iron oxide nanoparticles. Curr. Med. Chem. 2018;25:540–555. doi: 10.2174/0929867324666170616102922. PubMed DOI
Magro M, et al. Enlightening mineral iron sensing in Pseudomonas fluorescens by surface active maghemite nanoparticles: involvement of the OprF porin. Biochim. Biophys. Acta. 2016;1860:2202–2210. doi: 10.1016/j.bbagen.2016.05.007. PubMed DOI
Baalousha M, et al. The concentration-dependent behaviour of nanoparticles. Environ. Chem. 2016;13:1–3. doi: 10.1071/EN15142. DOI
Baalousha, M., Lead, J. R., von der Kammer, F., Hofmann, T. Natural colloids and nanoparticles in aquatic and terrestrial environments. In Environmental and human health impacts of nanotechnology (eds Lead, J. R. & Smith E.) 109-162 (Wiley, 2009).
Hartmann NB, et al. Algal testing of titanium dioxide nanoparticles - testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology. 2010;269:190–197. doi: 10.1016/j.tox.2009.08.008. PubMed DOI
Hartmann NB, et al. Techniques and protocols for dispersing nanoparticle powders in aqueous media - is there a rationale for harmonization? J. Toxicol. Environ. Health Part B. 2015;18:299–326. doi: 10.1080/10937404.2015.1074969. PubMed DOI
Brinch A, Hansen SF, Hartmann NB, Baun A. EU regulation of nanobiocides: challenges in implementing the Biocidal Product Regulation (BPR) Nanomaterials. 2016;6:33. doi: 10.3390/nano6020033. PubMed DOI PMC
Klüttgen B, Dülmer U, Engels M, Ratte HT. ADaM, an artificial freshwater for the culture of zooplankton. Water Res. 1994;28:743–746. doi: 10.1016/0043-1354(94)90157-0. DOI
Lucas IT, Durand-Vidal S, Dubois E, Chevalet J, Turq P. Surface charge density of maghemite nanoparticles: role of electrostatics in the proton exchange. J. Phys. Chem. C. 2007;111:18568–18576. doi: 10.1021/jp0743119. DOI
Gu C, Karthikeyan KG. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol. 2005;39:2660–2667. doi: 10.1021/es048603o. PubMed DOI
Von der Kammer F, Ottofuelling S, Hofmann T. Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. Environ. Pollut. 2010;158:3472–3481. doi: 10.1016/j.envpol.2010.05.007. PubMed DOI
Gao L, Zhang Q. Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticle. Scr. Mater. 2001;44:1195–1198. doi: 10.1016/S1359-6462(01)00681-9. DOI
Pfeiffer C, et al. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J. R. Soc. Interface. 2014;11:20130931. doi: 10.1098/rsif.2013.0931. PubMed DOI PMC
Hsu J-P, Liu B-T. Critical coagulation concentration of a colloidal suspension at high particle concentrations. J. Phys. Chem. B. 1998;102:334–337. doi: 10.1021/jp971817q. DOI
Hu J-D, et al. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci. Total Environ. 2010;408:3477–3489. doi: 10.1016/j.scitotenv.2010.03.033. PubMed DOI
Magro M, et al. Colloidal Surface Active Maghemite Nanoparticles for biologically safe CrVI remediation: from core-shell nanostructures to pilot plant development. Chem. Eur. J. 2016;22:14219–14226. doi: 10.1002/chem.201600544. PubMed DOI
Persoone G, et al. Review on the acute Daphnia magna toxicity test - evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowl. Manag. Aquat. Ecosyst. 2009;393:01. doi: 10.1051/kmae/2009012. DOI
OECD Guidance document on aquatic toxicity testing of difficult substances and mixtures, http://www.oecd-ilibrary.org/docserver/download/9750231e.pdf?expires=1519168656&id=id&accname=guest&checksum=833552EB7EF6C0A54EE2E165898FDAA3 (2000).
Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A. NanoE-Tox: new and in-depth database concerning ecotoxicity of nanomaterials. Beilstein J. Nanotechnol. 2015;6:1788–1804. doi: 10.3762/bjnano.6.183. PubMed DOI PMC
Artells E, et al. Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species. Plos One. 2013;8:e71260. doi: 10.1371/journal.pone.0071260. PubMed DOI PMC
Dabrunz A, et al. Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. Plos One. 2011;6:e20112. doi: 10.1371/journal.pone.0020112. PubMed DOI PMC
Baalousha M, et al. Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends. Environ. Sci. Nano. 2016;3:323–345. doi: 10.1039/C5EN00207A. DOI
González-Andrés V, et al. Acute ecotoxicity of coated colloidal goethite nanoparticles on Daphnia magna: evaluating the influence of exposure approaches. Sci. Total Environ. 2017;609:172–179. doi: 10.1016/j.scitotenv.2017.07.047. PubMed DOI
Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF. A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ. Toxicol. Chem. 2009;28:2142–2149. doi: 10.1897/08-559.1. PubMed DOI
Feswick A, Griffitt RJ, Siebein K, Barber DD. Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization. Aquat. Toxicol. 2013;130:210–218. doi: 10.1016/j.aquatox.2013.01.002. PubMed DOI
Scanlan LD, et al. Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano. 2013;7:10681–10694. doi: 10.1021/nn4034103. PubMed DOI PMC
Gaiser BK, et al. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ. Toxicol. Chem. 2012;31:144–154. doi: 10.1002/etc.703. PubMed DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Kwon D, Nho HW, Yoon TH. Transmission electron microscopy and scanning transmission X-ray microscopy studies on the bioaccumulation and tissue level absorption of TiO2 nanoparticles in Daphnia magna. J. Nanosci. Nanotechnol. 2015;15:4229–4238. doi: 10.1166/jnn.2015.9695. PubMed DOI
OECD Ecotoxicity and environmental fate of manufactured nanomaterials: test guidelines, http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2014)1/ADD&doclanguage=en (2014).
Geller W, Muller H. The filtration apparatus of cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia. 1981;49:316–321. doi: 10.1007/BF00347591. PubMed DOI
Gillis PL, Chow-Fraser P, Ranville JF, Ross PE, Wood CM. Daphnia need to be gut-cleared too: the effect of exposure to and ingestion of metal-contaminated sediment on the gut-clearance patterns of D. magna. Aquat. Toxicol. 2005;71:143–154. doi: 10.1016/j.aquatox.2004.10.016. PubMed DOI
Song L, Vijver MG, De Snoo GR, Peijnenburg WJ. Assessing toxicity of copper nanoparticles across five cladoceran species. Environ. Toxicol. Chem. 2015;8:1863–1869. doi: 10.1002/etc.3000. PubMed DOI
Gophen M, Geller W. Filter mesh size and food particle uptake by Daphnia. Oecologia. 1984;64:408–412. doi: 10.1007/BF00379140. PubMed DOI
Skjolding LM, et al. A critical review of aquatic ecotoxicity testing of nanoparticles - the quest for disclosing nanoparticle effects. Angew. Chem. Int. Ed. 2016;55:15224–15239. doi: 10.1002/anie.201604964. PubMed DOI PMC
Burns CW. Relation between filtering rate, temperature, and body size in 4 species of Daphnia. Limnol. Oceanogr. 1969;14:693–700. doi: 10.4319/lo.1969.14.5.0693. DOI
Sørensen SN, Holten Lgtzhøft H-C, Rasmussen R, Baun A. Acute and chronic effects from pulse exposure of D. magna to silver and copper oxide nanoparticles. Aquat. Toxicol. 2016;180:209–217. doi: 10.1016/j.aquatox.2016.10.004. PubMed DOI
Lovern SB, Strickler JR, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (Titanium Dioxide, Nano-C60, and C60HxC70Hx) Environ. Sci. Technol. 2007;41:4465–4470. doi: 10.1021/es062146p. PubMed DOI PMC
Pirow R, Wollinger F, Paul RJ. The sites of respiratory gas exchange in the planktonic crustacean Daphnia magna: an in vivo study employing blood haemoglobin as an internal oxygen probe. J. Exp. Biol. 1999;202:3089–3099. PubMed
Seidl MD, Pirow R, Paul RJ. Water fleas (Daphnia magna) provide a separate ventilatory mechanism for their brood. Zoology. 2002;105:15–23. doi: 10.1078/0944-2006-00050. PubMed DOI
OECD Guidelines for the testing of chemicals, Guideline n. 211, Daphnia magna reproduction test, http://www.oecd-ilibrary.org/docserver/download/9712171e.pdf?expires=1516284153&id=id&accname=guest&checksum=2A8DCB37411229B22AE11EAC9439CE5F (2012).
Kast-Hutscheson K, Rider CV, Leblanc GA. The fungicide propiconazole interferes with embryonic development of the crustacean Daphnia magna. Environ. Toxicol. Chem. 2001;20:502–509. doi: 10.1897/1551-5028(2001)020<0502:TFPIWE>2.0.CO;2. PubMed DOI
Obreshkove V, Fraser AW. Growth and differentiation of Daphnia magna eggs in vitro. Biol. Bull. 1940;78:428–436. doi: 10.2307/1537664. DOI
Bodar CWM, Zee AVD, Voogt PA, Wynne H, Zandee DI. Toxicity of heavy metals to early life stages of Daphnia magna. Ecotoxicol. Environ. Saf. 1989;17:333–338. doi: 10.1016/0147-6513(89)90054-7. PubMed DOI
Putman A, Martin-Creuzburg D, Panis B, De Meester L. A. comparative analysis of the fatty acid composition of sexual and asexual eggs of Daphnia magna and its plasticity as a function of food quality. J. Plankton Res. 2015;37:752–763. doi: 10.1093/plankt/fbv043. DOI
Magro M, et al. Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome. Anal. Bioanal. Chem. 2018;410:2949–2959. doi: 10.1007/s00216-018-0976-z. PubMed DOI
George S, et al. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano. 2012;6:3745–3759. doi: 10.1021/nn204671v. PubMed DOI PMC
Von Moos N, Slaveykova VI. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae – state of the art and knowledge gaps. Nanotoxicology. 2014;8:605–630. doi: 10.3109/17435390.2013.809810. PubMed DOI
Hu X, Li D, Gao Y, Mu L, Zhou Q. Knowledge gaps between nanotoxicological research and nanomaterial safety. Environ. Int. 2016;94:8–23. doi: 10.1016/j.envint.2016.05.001. PubMed DOI
Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 2012;14:1109–1119. doi: 10.1007/s11051-012-1109-9. DOI
Pietroiusti, A., Stockmann-Juvala, H., Lucaroni, F. & Savolainen, K. Nanomaterial exposure, toxicity, and impact on human health. WIREs Nanomed. Nanobiotechnol., e1513 (2018). PubMed
Kägi R, et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 2008;156:233–239. doi: 10.1016/j.envpol.2008.08.004. PubMed DOI
Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing. Environ. Sci. Technol. 2009;43:8113–8118. doi: 10.1021/es9018332. PubMed DOI
Mackevica A, Olsson ME, Hansen SF. Silver nanoparticle release from commercially available plastic food containers into food simulants. J. Nanopart. Res. 2016;18:1–11. doi: 10.1007/s11051-015-3313-x. DOI
Grieger KD, et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J. Contam. Hydrol. 2010;118:165–183. doi: 10.1016/j.jconhyd.2010.07.011. PubMed DOI
Ko KS, Kong IC. Influence of incubation conditions on the nanoparticles toxicity based on seed germination and bacterial bioluminescence. J. Nanosci. Nanotechnol. 2017;17:2382–2389. doi: 10.1166/jnn.2017.13098. PubMed DOI
European Parliament and Council Regulation concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency (ECHA), http://data.europa.eu/eli/reg/2006/1907/oj (2006).
Magro, M., Valle, G., Russo, U., Nodari, L. & Vianello, F. Maghemite nanoparticles and method for preparing thereof. US patent 8, 980, 218 (2015), European patent EP2596506 (2014).
Magro M, et al. Charge binding of rhodamine derivative to OH− stabilized nanomaghemite: universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomater. 2012;8:2068–2076. doi: 10.1016/j.actbio.2012.02.005. PubMed DOI
Magro M, et al. Avidin functionalized maghemite nanoparticles and their application for recombinant human biotinyl-SERCA purification. Langmuir. 2012;28:15392–15401. doi: 10.1021/la303148u. PubMed DOI
Nichols, H. W. Growth media-freshwater in Handbook of phycological methods–culture methods and growth measurements, (ed. Stein J. R.) 7–24 (Cambridge University Press, 1973).
OECD Guidelines for the testing of chemicals, Guideline n. 202, Daphnia sp. acute immobilisation test, http://www.oecd-ilibrary.org/docserver/download/9720201e.pdf?expires=1516283434&id=id&accname=guest&checksum=4F6F244A4DED132746FE7F8BBAD3FDB4 (2004).
LeBlanc GA, Mu X, Rider CV. Embryotoxicity of the alkylphenol degradation product 4-nonylphenol to the crustacean Daphnia magna. Environ. Health Perspect. 2000;108:1133–1138. doi: 10.1289/ehp.001081133. PubMed DOI PMC
Code of Federal Regulations US-EPA Protection of the environment - environmental effects testing guidelines, subpart b aquatic guidelines, algal Acute toxicity test, part 797.1050 (2005).
OECD Guidelines for the testing of chemicals, Guideline n. 221, Lemna sp. growth inhibition test, http://www.oecd-ilibrary.org/docserver/download/9722101e.pdf?expires=1516285231&id=id&accname=guest&checksum=12306D3DC6B831A23ACA50191511CC04 (2006).
Hamilton MA, Russo RC, Thurston RV. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1977;11:714–719. doi: 10.1021/es60130a004. DOI