Impact of trematode infections on periphyton grazing rates of freshwater snails
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
SAW-2014-SGN-3
Leibniz-association
PubMed
30173340
DOI
10.1007/s00436-018-6052-y
PII: 10.1007/s00436-018-6052-y
Knihovny.cz E-resources
- Keywords
- Freshwater snails, Grazing rates, Host–parasite interaction, Periphyton, Trematodes,
- MeSH
- Ecology MeSH
- Ecosystem MeSH
- Snails parasitology MeSH
- Trematode Infections parasitology MeSH
- Host-Parasite Interactions physiology MeSH
- Periphyton * MeSH
- Food Chain MeSH
- Eating physiology MeSH
- Fresh Water parasitology MeSH
- Trematoda isolation & purification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
In freshwater ecosystems, snails can significantly influence the competition between primary producers through grazing of periphyton. This activity can potentially be modified by trematodes, a large group of parasites which mostly use molluscs as the first intermediate host. Available studies, however, show contradictory effects of trematodes on snail periphyton grazing. Here, we used four different freshwater snail-trematode systems to test whether a general pattern can be detected for the impact of trematode infections on snail periphyton grazing. In our experimental systems, mass-specific periphyton grazing rates of infected snails were higher, lower, or similar to rates of non-infected conspecifics, suggesting that no general pattern exists. The variation across studied snail-trematode systems may result from differences on how the parasite uses the resources of the snail and thus affects their energy budget. Trematode infections can significantly alter the grazing rate of snails, where, depending on the system, the mass-specific grazing rate can double or halve. This underlines both, the high ecological relevance of trematodes and the need for comprehensive studies at the species level to allow an integration of these parasite-host interactions into aquatic food web concepts.
Faculty of Life Sciences Humboldt University Invalidenstrasse 42 10115 Berlin Germany
Leibniz Institute of Freshwater Ecology and Inland Fisheries Müggelseedamm 310 12589 Berlin Germany
See more in PubMed
Biochem J. 1991 Nov 1;279 ( Pt 3):837-42 PubMed
Exp Parasitol. 2013 Jun;134(2):228-34 PubMed
Biol Bull. 1990 Aug;179(1):105-112 PubMed
Parasite. 2007 Mar;14(1):39-51 PubMed
Parasitology. 2008 Dec;135(14):1691-9 PubMed
Z Parasitenkd. 1980 Jan;61(2):109-19 PubMed
J Invertebr Pathol. 2012 Mar;109(3):269-73 PubMed
Parasitol Res. 2009 Dec;106(1):55-9 PubMed
Z Parasitenkd. 1980;63(2):101-11 PubMed
Oecologia. 1998 Jun;115(1-2):188-195 PubMed
Syst Parasitol. 2008 Mar;69(3):155-78 PubMed
PLoS One. 2014 Nov 05;9(11):e111696 PubMed
Parasit Vectors. 2014 May 27;7:243 PubMed
Trends Ecol Evol. 1993 Aug;8(8):275-9 PubMed
Parasitol Int. 2014 Feb;63(1):94-9 PubMed
Parasitol Res. 2005 Aug;97(1):68-72 PubMed
Oecologia. 1999 May;119(3):320-325 PubMed
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9335-9 PubMed
Oecologia. 2014 Jul;175(3):947-58 PubMed
Parasit Vectors. 2013 Apr 10;6:92 PubMed
Z Parasitenkd. 1952;15(3):203-66 PubMed
J Parasitol. 2007 Apr;93(2):231-7 PubMed
Adv Parasitol. 2002;52:155-233 PubMed
Trends Ecol Evol. 1991 Aug;6(8):250-4 PubMed
J Parasitol. 1974 Dec;60(6):1046-7 PubMed
Parasitology. 2001;123 Suppl:S3-18 PubMed
Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11211-6 PubMed
Parasitology. 2001;123 Suppl:S129-41 PubMed
Integr Comp Biol. 2002 Apr;42(2):304-12 PubMed
PLoS One. 2013 Oct 31;8(10):e79366 PubMed
Parasitology. 2004 Jul;129(Pt 1):87-92 PubMed
J Parasitol. 1983 Aug;69(4):671-6 PubMed
Parasitology. 2001;123 Suppl:S57-75 PubMed
Ecol Lett. 2008 Jun;11(6):533-46 PubMed
PLoS One. 2016 Feb 19;11(2):e0149678 PubMed
PLoS Biol. 2013;11(6):e1001579 PubMed
Trends Parasitol. 2002 Apr;18(4):176-83 PubMed
Exp Parasitol. 1988 Feb;65(1):91-100 PubMed
Exp Parasitol. 2015 Jun;153:68-74 PubMed