Electromagnetic Shielding Effectiveness of Woven Fabrics with High Electrical Conductivity: Complete Derivation and Verification of Analytical Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FR-TI4/202
Ministerstvo Průmyslu a Obchodu
PubMed
30205502
PubMed Central
PMC6164115
DOI
10.3390/ma11091657
PII: ma11091657
Knihovny.cz E-zdroje
- Klíčová slova
- analytical model, electric properties, electromagnetic shielding effectiveness, fabric, woven textiles,
- Publikační typ
- časopisecké články MeSH
In this paper, electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity is investigated. Electromagnetic interference-shielding woven-textile composite materials were developed from a highly electrically conductive blend of polyester and the coated yarns of Au on a polyamide base. A complete analytical model of the electromagnetic shielding effectiveness of the materials with apertures is derived in detail, including foil, material with one aperture, and material with multiple apertures (fabrics). The derived analytical model is compared for fabrics with measurement of real samples. The key finding of the research is that the presented analytical model expands the shielding theory and is valid for woven fabrics manufactured from mixed and coated yarns with a value of electrical conductivity equal to and/or higher than σ = 244 S/m and an excellent electromagnetic shielding effectiveness value of 25⁻50 dB at 0.03⁻1.5 GHz, which makes it a promising candidate for application in electromagnetic interference (EMI) shielding.
Zobrazit více v PubMed
Safarova V., Tunak M., Truhlar M., Militky J. A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles. Text. Res. J. 2016;86:44–56. doi: 10.1177/0040517515581587. DOI
Çeven E.K., Karaküçük A., Dirik A.E., Yalçin U. Evaluation of electromagnetic shielding effectiveness of fabrics produced from yarns containing metal wire with a mobile based measurement system. Ind. Text. 2017;68:289–295.
Chen H.C., Lee K.C., Lin J.H., Koch M. Comparison of electromagnetic shielding effectiveness properties of diverse conductive textiles via various measurement techniques. J. Mater. Process. Techol. 2007;192:549–554. doi: 10.1016/j.jmatprotec.2007.04.023. DOI
Safarova V., Militky J. Comparison of methods for evaluating the electromagnetic shielding of textiles. Fibers Text. 2012;19:50–55.
Avloni J., Lau R., Ouyang M., Florio L., Henn A.R., Sparavigna A. Shielding Effectiveness Evaluation of Metallized and Polypyrrole-Coated Fabrics. J. Thermoplast. Comp. Mater. 2007;20:241–254. doi: 10.1177/0892705707076718. DOI
Ozen M.S., Usta I., Yuksek M., Sancak E., Soin N. Investigation of the Electromagnetic Shielding Effectiveness of Needle Punched Nonwoven Fabrics Produced from Stainless Steel and Carbon Fibres. Fibers Text. East. Eur. 2018;26:94–100. doi: 10.5604/01.3001.0010.5636. DOI
Hakan Ö., Uğurlu Ş.S., Özkurt A. The electromagnetic shielding of textured steel yarn based woven fabrics used for clothing. J. Ind. Text. 2015;45:416–436. doi: 10.1177/1528083715569369. DOI
Chen H.C., Lee K.C., Lin J.H., Koch M. Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. J. Mater. Process. Technol. 2007;184:124–130. doi: 10.1016/j.jmatprotec.2006.11.030. DOI
Tugirumubano A., Vijay S.J., Go S.H., Kwac L.K., Kim H.G. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites. J. Mater. Eng. Perform. 2018;27:1–8. doi: 10.1007/s11665-018-3334-6. DOI
King J.A., Pisani W.A., Klimek-McDonald D.R., Perger W.F., Odegard G.M., Turpeinen D.G. Shielding effectiveness of carbon-filled polypropylene composites. J. Compos. Mater. 2015;50:2177–2189. doi: 10.1177/0021998315602326. DOI
Pothupitiya Gamage S.J., Yang K., Braveenth R., Raagulan K., Kim H.S., Lee Y.S., Yang C.M., Moon J.J., Chai K.Y. MWCNT Coated Free-Standing Carbon Fiber Fabric for Enhanced Performance in EMI Shielding with a Higher Absolute EMI SE. Materials. 2017;10:1350. doi: 10.3390/ma10121350. DOI
Lu Y., Xue L. Electromagnetic interference shielding, mechanical properties and water absorption of copper/bamboo fabric (Cu/BF) composites. Compos. Sci. Technol. 2012;72:828–834. doi: 10.1016/j.compscitech.2012.02.012. DOI
Maity S., Chatterjee A. Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: A review. J. Ind. Text. 2018;47:2228–2252. doi: 10.1177/1528083716670310. DOI
Tunáková V., Grégr J., Tunák M. Functional polyester fabric/polypyrrole polymer composites for electromagnetic shielding: Optimization of process parameters. J. Ind. Text. 2016;47:686–711. doi: 10.1177/1528083716667262. DOI
Duran D., Kadoğlu H. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns. Text. Res. J. 2015;85:1009–1021. doi: 10.1177/0040517512468811. DOI
Ortlek H.G., Alpyildiz T., Kilic G. Determination of electromagnetic shielding performance of hybrid yarn knitted fabrics with anechoic chamber method. Text. Res. J. 2013;83:90–99. doi: 10.1177/0040517512456758. DOI
Safarova V., Militky J. Electromagnetic shielding properties of woven fabrics made from high-performance fibers. Text. Res. J. 2014;84:1255–1267. doi: 10.1177/0040517514521118. DOI
Tunáková V., Techniková L., Militký J. Influence of washing/drying cycles on fundamental properties of metal fiber-containing fabrics designed for electromagnetic shielding purposes. Text. Res. J. 2017;87:175–192. doi: 10.1177/0040517515627168. DOI
Šaravanja B., Malarić K., Pušić T., Ujević D. Impact of dry cleaning on the electromagnetic shield characteristics of interlining fabric. Fibers Text. East. Eur. 2015;23:104–108.
Kayacan Ö. The Effect of Washing Process on the Electromagnetic Shielding of Knitted Fabrics. J. Text. Apparel. 2014;24:356–362.
Wang X., Liu Z., Jiao M. Computation model of shielding effectiveness of symmetric partial for anti-electromagnetic radiation garment. Prog. Electromagn. Res. B. 2013;47:19–35. doi: 10.2528/PIERB12111102. DOI
Liu Z., Wang X.C., Zhou Z. Computation of shielding effectiveness for electromagnetic shielding blended fabric. Przeg. Elektrotechnol. 2013;89:228–230.
Perumalraj R., Dasaradan B.S., Anbarasu R., Arokiaraj P., Harish S.L. Electromagnetic shielding effectiveness of copper core-woven fabrics. J. Text. Inst. 2009;100:512–524. doi: 10.1080/00405000801997587. DOI
Hong X., Mei W.S., Qun W., Qian L. The electromagnetic shielding and reflective properties of electromagnetic textiles with pores, planar periodic units and space structures. Text. Res. J. 2014;84:1679–1691. doi: 10.1177/0040517514527371. DOI
Henn A.R., Crib R.M. Modeling the shielding effectiveness of metallized fabrics; Presented at the International Symposium on Electromagnetic Compatibility; Anaheim, CA, USA. 17–21 August 1992.
Vojtech L., Neruda M., Hajek J. Planar Materials Electromagnetic Shielding Effectiveness Derivation. Int. J. Com. Antenna Propag. 2011;1:21–28.
Vojtech L., Neruda M., Hajek J. Modelling of Electromagnetic Parameters of Planar Textile Materials. In: Beneš L., Ulewicz R.M., editors. New Trends in the Field of Materials and Technologies Engineering. Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji; Czestochowa, Poland: 2012. pp. 123–159.
Neelakanta P.S. Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications. 1st ed. CRC Press; Boca Raton, FL, USA: 1995. pp. 447–490.
Wang X.C., Su Y., Li Y., Liu Z. Computation Model of Shielding Effectiveness of Electromagnetic Shielding Fabrics with Seaming Stitch. Prog. Electromagn. Res. 2017;55:85–93. doi: 10.2528/PIERM17011907. DOI
Robinson M.P., Benson T.M., Christopoulos C., Dawson J.F., Ganley M.D., Marvin A.C., Porter S.J., Thomas D.W. Analytical formulation for the shielding effectiveness of enclosures with apertures. IEEE Trans. Electromagn. Compat. 1998;40:240–248. doi: 10.1109/15.709422. DOI
Liang R., Cheng W., Xiao H., Shi M., Tang Z., Wang N. A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric. Text. Res. J. 2017;88:973–986. doi: 10.1177/0040517517693980. DOI
Ott H.W. Electromagnetic Compatibility Engineering. 1st ed. John Wiley & Sons; Hoboken, NJ, USA: 2009. pp. 238–300.
Christopoulos C. Principles and Techniques of Electromagnetic Compatibility. 2nd ed. CRC Press; Boca Raton, FL, USA: 2007.
BS EN 16812:2016 . Textiles and Textile Products; Electrically Conductive Textiles; Determination of the Linear Electrical Resistance of Conductive Tracks. British Standard European Norm; London, UK: 2016.
Vojtech L., Neruda M. Modelling of surface and bulk resistance for wearable textile antenna design. Przeg. Elektrotech. 2013;89:217–222.
Tim W. EMC for Product Designers. 3rd ed. Newnes; Oxford, UK: 2001. pp. 293–308.
Electromagnetic Compatibility. [(accessed on 30 July 2018)]; Available online: www.urel.feec.vutbr.cz/~drinovsky/?download=Skripta_EMC.pdf.
Properties Table of Stainless Steel, Metals and Other Conductive Materials. [(accessed on 8 May 2018)]; Available online: www.tibtech.com/conductivity.php.
ASTM D4935-10:2010 . Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM International; West Conshohocken, PA, USA: 2010.
Sensitivity of Multi Turn Receiving Loops. [(accessed on 30 July 2018)]; Available online: www.vlf.it/octoloop/rlt-n4ywk.htm.
Wieckowski T.W., Jankukiewicz M.J. Methods for evaluating the shielding effectiveness of textiles. Fibers Text. East. Eur. 2006;14:18–22.