Electromagnetic Shielding Effectiveness of Woven Fabrics with High Electrical Conductivity: Complete Derivation and Verification of Analytical Model

. 2018 Sep 07 ; 11 (9) : . [epub] 20180907

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30205502

Grantová podpora
FR-TI4/202 Ministerstvo Průmyslu a Obchodu

In this paper, electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity is investigated. Electromagnetic interference-shielding woven-textile composite materials were developed from a highly electrically conductive blend of polyester and the coated yarns of Au on a polyamide base. A complete analytical model of the electromagnetic shielding effectiveness of the materials with apertures is derived in detail, including foil, material with one aperture, and material with multiple apertures (fabrics). The derived analytical model is compared for fabrics with measurement of real samples. The key finding of the research is that the presented analytical model expands the shielding theory and is valid for woven fabrics manufactured from mixed and coated yarns with a value of electrical conductivity equal to and/or higher than σ = 244 S/m and an excellent electromagnetic shielding effectiveness value of 25⁻50 dB at 0.03⁻1.5 GHz, which makes it a promising candidate for application in electromagnetic interference (EMI) shielding.

Zobrazit více v PubMed

Safarova V., Tunak M., Truhlar M., Militky J. A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles. Text. Res. J. 2016;86:44–56. doi: 10.1177/0040517515581587. DOI

Çeven E.K., Karaküçük A., Dirik A.E., Yalçin U. Evaluation of electromagnetic shielding effectiveness of fabrics produced from yarns containing metal wire with a mobile based measurement system. Ind. Text. 2017;68:289–295.

Chen H.C., Lee K.C., Lin J.H., Koch M. Comparison of electromagnetic shielding effectiveness properties of diverse conductive textiles via various measurement techniques. J. Mater. Process. Techol. 2007;192:549–554. doi: 10.1016/j.jmatprotec.2007.04.023. DOI

Safarova V., Militky J. Comparison of methods for evaluating the electromagnetic shielding of textiles. Fibers Text. 2012;19:50–55.

Avloni J., Lau R., Ouyang M., Florio L., Henn A.R., Sparavigna A. Shielding Effectiveness Evaluation of Metallized and Polypyrrole-Coated Fabrics. J. Thermoplast. Comp. Mater. 2007;20:241–254. doi: 10.1177/0892705707076718. DOI

Ozen M.S., Usta I., Yuksek M., Sancak E., Soin N. Investigation of the Electromagnetic Shielding Effectiveness of Needle Punched Nonwoven Fabrics Produced from Stainless Steel and Carbon Fibres. Fibers Text. East. Eur. 2018;26:94–100. doi: 10.5604/01.3001.0010.5636. DOI

Hakan Ö., Uğurlu Ş.S., Özkurt A. The electromagnetic shielding of textured steel yarn based woven fabrics used for clothing. J. Ind. Text. 2015;45:416–436. doi: 10.1177/1528083715569369. DOI

Chen H.C., Lee K.C., Lin J.H., Koch M. Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. J. Mater. Process. Technol. 2007;184:124–130. doi: 10.1016/j.jmatprotec.2006.11.030. DOI

Tugirumubano A., Vijay S.J., Go S.H., Kwac L.K., Kim H.G. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites. J. Mater. Eng. Perform. 2018;27:1–8. doi: 10.1007/s11665-018-3334-6. DOI

King J.A., Pisani W.A., Klimek-McDonald D.R., Perger W.F., Odegard G.M., Turpeinen D.G. Shielding effectiveness of carbon-filled polypropylene composites. J. Compos. Mater. 2015;50:2177–2189. doi: 10.1177/0021998315602326. DOI

Pothupitiya Gamage S.J., Yang K., Braveenth R., Raagulan K., Kim H.S., Lee Y.S., Yang C.M., Moon J.J., Chai K.Y. MWCNT Coated Free-Standing Carbon Fiber Fabric for Enhanced Performance in EMI Shielding with a Higher Absolute EMI SE. Materials. 2017;10:1350. doi: 10.3390/ma10121350. DOI

Lu Y., Xue L. Electromagnetic interference shielding, mechanical properties and water absorption of copper/bamboo fabric (Cu/BF) composites. Compos. Sci. Technol. 2012;72:828–834. doi: 10.1016/j.compscitech.2012.02.012. DOI

Maity S., Chatterjee A. Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: A review. J. Ind. Text. 2018;47:2228–2252. doi: 10.1177/1528083716670310. DOI

Tunáková V., Grégr J., Tunák M. Functional polyester fabric/polypyrrole polymer composites for electromagnetic shielding: Optimization of process parameters. J. Ind. Text. 2016;47:686–711. doi: 10.1177/1528083716667262. DOI

Duran D., Kadoğlu H. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns. Text. Res. J. 2015;85:1009–1021. doi: 10.1177/0040517512468811. DOI

Ortlek H.G., Alpyildiz T., Kilic G. Determination of electromagnetic shielding performance of hybrid yarn knitted fabrics with anechoic chamber method. Text. Res. J. 2013;83:90–99. doi: 10.1177/0040517512456758. DOI

Safarova V., Militky J. Electromagnetic shielding properties of woven fabrics made from high-performance fibers. Text. Res. J. 2014;84:1255–1267. doi: 10.1177/0040517514521118. DOI

Tunáková V., Techniková L., Militký J. Influence of washing/drying cycles on fundamental properties of metal fiber-containing fabrics designed for electromagnetic shielding purposes. Text. Res. J. 2017;87:175–192. doi: 10.1177/0040517515627168. DOI

Šaravanja B., Malarić K., Pušić T., Ujević D. Impact of dry cleaning on the electromagnetic shield characteristics of interlining fabric. Fibers Text. East. Eur. 2015;23:104–108.

Kayacan Ö. The Effect of Washing Process on the Electromagnetic Shielding of Knitted Fabrics. J. Text. Apparel. 2014;24:356–362.

Wang X., Liu Z., Jiao M. Computation model of shielding effectiveness of symmetric partial for anti-electromagnetic radiation garment. Prog. Electromagn. Res. B. 2013;47:19–35. doi: 10.2528/PIERB12111102. DOI

Liu Z., Wang X.C., Zhou Z. Computation of shielding effectiveness for electromagnetic shielding blended fabric. Przeg. Elektrotechnol. 2013;89:228–230.

Perumalraj R., Dasaradan B.S., Anbarasu R., Arokiaraj P., Harish S.L. Electromagnetic shielding effectiveness of copper core-woven fabrics. J. Text. Inst. 2009;100:512–524. doi: 10.1080/00405000801997587. DOI

Hong X., Mei W.S., Qun W., Qian L. The electromagnetic shielding and reflective properties of electromagnetic textiles with pores, planar periodic units and space structures. Text. Res. J. 2014;84:1679–1691. doi: 10.1177/0040517514527371. DOI

Henn A.R., Crib R.M. Modeling the shielding effectiveness of metallized fabrics; Presented at the International Symposium on Electromagnetic Compatibility; Anaheim, CA, USA. 17–21 August 1992.

Vojtech L., Neruda M., Hajek J. Planar Materials Electromagnetic Shielding Effectiveness Derivation. Int. J. Com. Antenna Propag. 2011;1:21–28.

Vojtech L., Neruda M., Hajek J. Modelling of Electromagnetic Parameters of Planar Textile Materials. In: Beneš L., Ulewicz R.M., editors. New Trends in the Field of Materials and Technologies Engineering. Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji; Czestochowa, Poland: 2012. pp. 123–159.

Neelakanta P.S. Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications. 1st ed. CRC Press; Boca Raton, FL, USA: 1995. pp. 447–490.

Wang X.C., Su Y., Li Y., Liu Z. Computation Model of Shielding Effectiveness of Electromagnetic Shielding Fabrics with Seaming Stitch. Prog. Electromagn. Res. 2017;55:85–93. doi: 10.2528/PIERM17011907. DOI

Robinson M.P., Benson T.M., Christopoulos C., Dawson J.F., Ganley M.D., Marvin A.C., Porter S.J., Thomas D.W. Analytical formulation for the shielding effectiveness of enclosures with apertures. IEEE Trans. Electromagn. Compat. 1998;40:240–248. doi: 10.1109/15.709422. DOI

Liang R., Cheng W., Xiao H., Shi M., Tang Z., Wang N. A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric. Text. Res. J. 2017;88:973–986. doi: 10.1177/0040517517693980. DOI

Ott H.W. Electromagnetic Compatibility Engineering. 1st ed. John Wiley & Sons; Hoboken, NJ, USA: 2009. pp. 238–300.

Christopoulos C. Principles and Techniques of Electromagnetic Compatibility. 2nd ed. CRC Press; Boca Raton, FL, USA: 2007.

BS EN 16812:2016 . Textiles and Textile Products; Electrically Conductive Textiles; Determination of the Linear Electrical Resistance of Conductive Tracks. British Standard European Norm; London, UK: 2016.

Vojtech L., Neruda M. Modelling of surface and bulk resistance for wearable textile antenna design. Przeg. Elektrotech. 2013;89:217–222.

Tim W. EMC for Product Designers. 3rd ed. Newnes; Oxford, UK: 2001. pp. 293–308.

Electromagnetic Compatibility. [(accessed on 30 July 2018)]; Available online: www.urel.feec.vutbr.cz/~drinovsky/?download=Skripta_EMC.pdf.

Properties Table of Stainless Steel, Metals and Other Conductive Materials. [(accessed on 8 May 2018)]; Available online: www.tibtech.com/conductivity.php.

ASTM D4935-10:2010 . Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM International; West Conshohocken, PA, USA: 2010.

Sensitivity of Multi Turn Receiving Loops. [(accessed on 30 July 2018)]; Available online: www.vlf.it/octoloop/rlt-n4ywk.htm.

Wieckowski T.W., Jankukiewicz M.J. Methods for evaluating the shielding effectiveness of textiles. Fibers Text. East. Eur. 2006;14:18–22.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...