Mechanical, Thermal, Electrical Characteristics and EMI Absorption Shielding Effectiveness of Rubber Composites Based on Ferrite and Carbon Fillers

. 2021 Aug 31 ; 13 (17) : . [epub] 20210831

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34502977

Grantová podpora
APVV-16-0136, APVV-19-0091 Agentúra na Podporu Výskumu a Vývoja

In this work, rubber composites were fabricated by incorporation of manganese-zinc ferrite alone and in combination with carbon-based fillers into acrylonitrile-butadiene rubber. Electromagnetic parameters and electromagnetic interference (EMI) absorption shielding effectiveness of composite materials were examined in the frequency range 1 MHz-3 GHz. The influence of ferrite and fillers combination on thermal characteristics and mechanical properties of composites was investigated as well. The results revealed that ferrite imparts absorption shielding efficiency to the composites in tested frequency range. The absorption shielding effectiveness and absorption maxima of ferrite filled composites shifted to lower frequencies with increasing content of magnetic filler. The combination of carbon black and ferrite also resulted in the fabrication of efficient EMI shields. However, the EMI absorption shielding effectiveness was lower, which can be ascribed to higher electrical conductivity and higher permittivity of those materials. The highest conductivity and permittivity of composites filled with combination of carbon nanotubes and ferrite was responsible for the lowest absorption shielding effectiveness within the examined frequency range. The results also demonstrated that combination of ferrite with carbon-based fillers resulted in the enhancement of thermal conductivity and improvement of mechanical properties.

Zobrazit více v PubMed

Mariappan P.M., Raghavan D.R., Abdel Aleem S.H.E., Zobaa A.F. Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/ 4G cellular phones: A review. J. Adv. Res. 2016;7:727–738. doi: 10.1016/j.jare.2016.04.004. DOI

Mathur P., Raman S. Electromagnetic interference (EMI): Measurement and reduction techniques. J. Electron. Mater. 2020;49:2975–2998. doi: 10.1007/s11664-020-07979-1. DOI

Driessen S., Napp A., Schmiedchen K., Kraus T., Stunder D. Electromagnetic interference in cardiac electronic implants caused by novel electrical appliances emitting electromagnetic fields in the intermediate frequency range: A systematic review. Eurospace. 2019;21:219–229. doi: 10.1093/europace/euy155. PubMed DOI PMC

Okechukwu C.E. Effects of radiofrequency electromagnetic field exposure on neurophysiology. Adv. Hum. Biol. 2020;10:6–10. doi: 10.4103/AIHB.AIHB_96_19. DOI

Raagulan K., Kim B.M., Chai K.Y. Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials. 2020;10:702. doi: 10.3390/nano10040702. PubMed DOI PMC

Jaroszewski M., Thomas S., Rane A.V. Advanced Materials for Electromagnetic Shielding. Fundamentals, Properties and Applications. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2019.

Leão A., Indrusiak T., Costa M.F., Soares G.B. Exploring the potential use of clean scrap PVDF as matrix for conductive composites based on graphite, carbon black and hybrids: Electromagnetic interference shielding effectiveness (EMI SE) J. Polym Environ. 2020;28:2091–2100. doi: 10.1007/s10924-020-01753-4. DOI

Zeraati A.S., Sundararaj U. Carbon nanotube/ZnO nanowire/polyvinylidene fluoride hybrid nanocomposites for enhanced electromagnetic interference shielding. Can. J. Chem Eng. 2020;98:1036–1046. doi: 10.1002/cjce.23717. DOI

Meng F., Wang H., Huang F., Guo Y., Wang Z., Hui D., Zhou Z. Graphene-based microwave absorbing composites: A review and prospective. Compos. Par B Eng. 2018;137:260–277. doi: 10.1016/j.compositesb.2017.11.023. DOI

Singh A.K., Shishkin A., Koppel T., Gupta N. Porous Materials for EMI Shielding: Materials for Potential EMI Shielding Applications. 1st ed. Elsevier Inc.; Amsterdam, The Netherlands: 2020. pp. 287–314.

Do Amaral M.A., Jr., Marcuzzo J.S., da Silva Pinheiro B., Lopes B.H.K., de Oliveira A.P.S., Matsushima J.T., Baldan M.R. Study of reflection process for nickel coated activated carbon fiber felt applied with electromagnetic interference shielding. J. Mater. Res. Technol. 2019;8:4040–4047. doi: 10.1016/j.jmrt.2019.07.014. DOI

Pandey R., Tekumalla S., Gupta M. EMI Shielding of Metals, Alloys and Composites. Materials for Potential EMI Shielding Applications. 1st ed. Elsevier Inc.; Amsterdam, The Netherlands: 2020. pp. 341–355.

Kumar P., Kumar A., Cho K.Y., Das T.K., Sudarsan V. An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding. AIP Adv. 2017;7:015103. doi: 10.1063/1.4973535. DOI

Mane R.S., Jadhav V.V. Types, Synthesis Methods and Applications of Ferrites. Spinel Ferrite Nanostructures for Energy Storage Devices. Elsevier Inc.; Amsterdam, The Netherlands: 2020. pp. 51–82.

Jeong K.P., Yang S.W., Choi J.H., Kim J.G. Microwave absorption characteristics of U-type ferite powders according to substitution elements and its compositions. Met. Mater. Int. 2020 doi: 10.1007/s12540-020-00613-z. DOI

Farida E., Bukit N., Ginting E.M., Bukit B.F. The effect of carbon black composition in natural rubber compound. Case Stud. Therm Eng. 2019;16:100566. doi: 10.1016/j.csite.2019.100566. DOI

Saifuddin N., Raziah A.Z., Junizah A.R. Carbon nanotubes: A review on structure and their interaction with proteins. J. Chem. 2013;2013:676815. doi: 10.1155/2013/676815. DOI

dos Santos Monteiro E., Kasal R.B., Moraes N.C., Mota de Melo G.B., dos Santos J.C.A., da Silva Figueired A.B.H. Nanoparticles of Ni1-xZnxFe2O4 used as microwave absorbers in the X-band. Mater. Res. 2019;22:e20190188

Raju P., Shankar J., Anjaiah J., Murthy S.R. Shielding effectiveness studies of NiCuZn ferrite-polyaniline nanocomposites for EMI suppression applications. AIP Conf Proc. 2019;2162:020027

Acharya S., Datar S. Wideband (8–18 GHz) microwave absorption dominated electromagnetic interference (EMI) shielding composite using copper aluminum ferrite and reduced graphene oxide in polymer matrix. J. Appl Phys. 2020;128:104902. doi: 10.1063/5.0009186. DOI

Al-Saleh M.H., Sundararaj U. X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. J. Phys. D Appl. Phys. 2013;46:035304. doi: 10.1088/0022-3727/46/3/035304. DOI

Jani R.K., Patra M.K., Saini L., Shukla A., Singh C.P., Vadera S.R. Tuning of microwave absorption properties and electromagnetic interference (EMI) shielding effectiveness of nanosize conducting black-silicone rubber composites over 8–18 GHz. Prog. Electromang. Res. 2017;58:193–204. doi: 10.2528/PIERM17022704. DOI

Zhang Y.P., Zhou C.G., Sun W.J., Wang T., Jia L.C., Yan D.X., Li Z.M. Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Compos. Sci. Technol. 2020;197:108253. doi: 10.1016/j.compscitech.2020.108253. DOI

Feng X., Qin X., Liu D., Huang Z., Zhou Y., Lan W., Lu F., Qi H. High electromagnetic interference shielding effectiveness of carbon nanotube–cellulose composite films with layered structures. Macromol. Mater. Eng. 2018;303:1800377. doi: 10.1002/mame.201800377. DOI

Liu C., Yu C., Sang G., Xu P., Ding Y. Improvement in EMI shielding properties of silicone rubber/POE blends containing ILs modified with carbon black and MWCNTs. Appl. Sci. 2019;9:1774. doi: 10.3390/app9091774. DOI

Kruželák J., Kvasničáková A., Ušák E., Ušáková M., Dosoudil R., Hudec I. Rubber magnets based on NBR and lithium ferite with the ability to absorb electromagnetic radiation. Polym. Adv. Techol. 2020;31:1624–1633. doi: 10.1002/pat.4891. DOI

Shukla V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019;1:1640–1671. doi: 10.1039/C9NA00108E. PubMed DOI PMC

Idris M.F., Hashim M., Abbas Z., Ismail I., Nazlan R., Ibrahim I.R. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies. J. Magn. Magn. Mater. 2016;405:197–208. doi: 10.1016/j.jmmm.2015.12.070. DOI

Wang Z., Wei R., Gu J., Liu H., Liu C., Luo C., Kong J., Shao Q., Wang N., Guo Z., et al. Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon. 2018;139:1126–1135. doi: 10.1016/j.carbon.2018.08.014. DOI

Liu P., Gao S., Wang Y., Zhou F., Huang Y., Huang W., Chang N. Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon. 2020;170:503–516. doi: 10.1016/j.carbon.2020.08.043. DOI

Yakovenko O.S., Matzui L.Y., Vovchenko L.L., Lazarenko O.A., Perets Y.S., Lozitsky O.V. Complex permittivity of polymer-based composites with carbon nanotubes in microwave band. Appl. Nanosci. 2020;10:2691–2697. doi: 10.1007/s13204-019-01083-5. DOI

Kruželák J., Kvasničáková A., Plavec R., Ušák E., Ušáková M., Dosoudil R., Hudec I. Low frequency electromagnetic shielding efficiency of composites based on ethylene propylene diene monomer and multi-walled carbon nanotubes. Polym. Adv. Techol. 2020;31:3272–3280. doi: 10.1002/pat.5051. DOI

Sarvi A., Sundararaj U. Electrical permitivitty and electrical conductivity of multiwalled carbon nanotube-polyaniline (MWCNT-PANi) core-shell nanofibres and MWCNT-PANi/polystyrene composites. Macromol. Mater. Eng. 2014;299:1013–1020. doi: 10.1002/mame.201300406. DOI

Kruželák J., Kvasničáková A., Hložeková K., Hudec I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 2020 doi: 10.1039/D0NA00760A. PubMed DOI PMC

Marín-Genescà M., García-Amorós J., Mujal-Rosas R., Massagués L., Colom X. Study and characterization of the dielectric behavior of low linear density polyethylene composites mixed with ground tire rubber particles. Polymers. 2020;12:1075. doi: 10.3390/polym12051075. PubMed DOI PMC

Gupta T.K., Singh B.P., Singh V.N., Teotia S., Singh A.P., Elizabeth I., Dhakate S.R., Dhawan S.K., Mathur R.B. MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A. 2014;2:4256–4263. doi: 10.1039/c3ta14854h. DOI

Yadav R.S., Kuřitka I., Vilcakova J., Machovsky M., Skoda D., Urbánek P., Masař M., Jurča M., Urbánek M., Kalina L., et al. NiFe2O4 nanoparticles synthesized by dextrin from corn-mediated sol−gel combustion method and its polypropylene nanocomposites engineered with reduced graphene oxide for the reduction of electromagnetic pollution. ACS Omega. 2019;4:22069–22081. doi: 10.1021/acsomega.9b03191. PubMed DOI PMC

Petrossian G., Aliheidari N., Ameli A. Thermoplastic polyurethane/lead zirconate titanate/carbon nanotube composites with very high dielectric permittivity and low dielectric loss. J. Compos. Sci. 2020;4:137. doi: 10.3390/jcs4030137. DOI

Sankaran S., Deshmukh K., Basheer Ahamed M., Khadheer Pasha S.K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part. A. 2018;114:49–71. doi: 10.1016/j.compositesa.2018.08.006. DOI

Ramírez-Herrera C.A., Gonzalez H., de la Torre F., Benitez L., Cabañas-Moreno J.G., Lozano K. Electrical properties and electromagnetic interference shielding effectiveness of interlayered systems composed by carbon nanotube filled carbon nanofiber mats and polymer composites. Nanomaterials. 2019;9:238. doi: 10.3390/nano9020238. PubMed DOI PMC

Neruda M., Vojtech L. Electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity: Complete derivation and verification of analytical model. Materials. 2018;11:1657. doi: 10.3390/ma11091657. PubMed DOI PMC

Gaoui B., Hadjadl A., Kious M. Enhancement of the shielding effectiveness of multilayer materials by gradient thickness in the stacked layers. J. Mater. Sci. Mater. Electron. 2017;28:11292–11299. doi: 10.1007/s10854-017-6920-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...