NiFe2O4 Nanoparticles Synthesized by Dextrin from Corn-Mediated Sol-Gel Combustion Method and Its Polypropylene Nanocomposites Engineered with Reduced Graphene Oxide for the Reduction of Electromagnetic Pollution

. 2019 Dec 24 ; 4 (26) : 22069-22081. [epub] 20191209

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31891087

In this work, nickel ferrite (NiFe2O4) nanoparticles were synthesized by dextrin from corn-mediated sol-gel combustion method and were annealed at 600, 800, and 1000 °C. The structural and physical characteristics of prepared nanoparticles were studied in detail. The average crystallite size was 20.6, 34.5, and 68.6 nm for NiFe2O4 nanoparticles annealed at 600 °C (NFD@600), 800 °C (NFD@800), and 1000 °C (NFD@1000), respectively. The electromagnetic interference shielding performance of prepared nanocomposites of NiFe2O4 nanoparticles (NFD@600 or NFD@800 or NFD@1000) in polypropylene (PP) matrix engineered with reduced graphene oxide (rGO) have been investigated; the results indicated that the prepared nanocomposites consisted of smaller-sized nickel ferrite nanoparticles exhibited excellent electromagnetic interference (EMI) shielding characteristics. The total EMI shielding effectiveness (SET) for the prepared nanocomposites have been noticed to be 45.56, 36.43, and 35.71 dB for NFD@600-rGO-PP, NFD@800-rGO-PP, and NFD@1000-rGO-PP nanocomposites, respectively, at the thickness of 2 mm in microwave X-band range (8.2-12.4 GHz). The evaluated values of specific EMI shielding effectiveness (SSE) were 38.81, 32.79, and 31.73 dB·cm3/g, and the absolute EMI shielding effectiveness (SSE/t) values were 388.1, 327.9, and 317.3 dB·cm2/g for NFD@600-rGO-PP, NFD@800-rGO-PP, and NFD@1000-rGO-PP, respectively. The prepared lightweight and flexible sheets can be considered useful nanocomposites against electromagnetic radiation pollution.

Zobrazit více v PubMed

Han Y.; Lin J.; Liu Y.; Fu H.; Ma Y.; Jin P.; Tan J. Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding. Sci. Rep. 2016, 6, 2560110.1038/srep25601. PubMed DOI PMC

Zhang H.-B.; Yan Q.; Zheng W.-G.; He Z.; Yu Z.-Z. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. 10.1021/am200021v. PubMed DOI

Zeng Z.; Chen M.; Pei Y.; Shahabadi S. I. S.; Che B.; Wang P.; Lu X. Ultralight and Flexible Polyurethane/Silver Nanowire Nanocomposites with Unidirectional Pores for Highly Effective Electromagnetic Shielding. ACS Appl. Mater. Interfaces 2017, 9, 32211–32219. 10.1021/acsami.7b07643. PubMed DOI

Lou Z.; Han H.; Zhou M.; Han J.; Cai J.; Huang C.; Zou J.; Zhou X.; Zhou H.; Sun Z. Synthesis of Magnetic Wood with Excellent and Tunable Electromagnetic Wave-Absorbing Properties by a Facile Vacuum/Pressure Impregnation Method. ACS Sustainable Chem. Eng. 2018, 6, 1000–1008. 10.1021/acssuschemeng.7b03332. DOI

Yang W.; Shao B.; Liu T.; Zhang Y.; Huang R.; Chen F.; Fu Q. Robust and Mechanically and Electrically Self-Healing Hydrogel for Efficient Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2018, 10, 8245–8257. 10.1021/acsami.7b18700. PubMed DOI

Xu Y.; Li Y.; Hua W.; Zhang A.; Bao J. Light-Weight Silver Plating Foam and Carbon Nanotube Hybridized Epoxy Composite Foams with Exceptional Conductivity and Electromagnetic Shielding Property. ACS Appl. Mater. Interfaces 2016, 8, 24131–24142. 10.1021/acsami.6b08325. PubMed DOI

Qi X.; Yang E.; Cai H.; Xie R.; Bai Z.; Jiang Y.; Qin S.; Zhong W.; Du Y. Water-assisted and controllable synthesis of core/shell/shell structured carbon-based nanohybrids, and their magnetic and microwave absorption properties. Sci. Rep. 2017, 7, 985110.1038/s41598-017-10352-8. PubMed DOI PMC

Zhang J.; Li J.; Tan G.; Hu R.; Wang J.; Chang C.; Wang X. Thin and Flexible Fe–Si–B/Ni–Cu–P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2017, 9, 42192–42199. 10.1021/acsami.7b12504. PubMed DOI

Chaudhary A.; Kumari S.; Kumar R.; Teotia S.; Singh B. P.; Singh A. P.; Dhawan S. K.; Dhakate S. R. Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper with Exceptional Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2016, 8, 10600–10608. 10.1021/acsami.5b12334. PubMed DOI

Tan Y.; Luo H.; Zhou X.; Peng S.; Zhang H. Dependences of microstructure on electromagnetic interference shielding properties of nanolayered Ti3AlC2 ceramics. Sci. Rep. 2018, 8, 793510.1038/s41598-018-26256-0. PubMed DOI PMC

Wang J.; Zhou H.; Zhuang J.; Liu Q. Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites. Sci. Rep. 2013, 3, 325210.1038/srep03252. PubMed DOI PMC

Hu Q.; Qi X.; Cai H.; Xie R.; Long L.; Bai Z.; Jiang Y.; Qin S.; Zhong W.; Du Y. Preparation of porous Fe2O3 nanorods-reduced graphene oxide nanohybrids and their excellent microwave absorption properties. Sci. Rep. 2017, 7, 1121310.1038/s41598-017-11131-1. PubMed DOI PMC

Zhang J.; Zhang Y.; Wu X.; Ma Y.; Chien S.-Y.; Guan R.; Zhang D.; Yang B.; Yan B.; Yang J. Correlation between Structural Changes and Electrical Transport Properties of Spinel ZnFe2O4 Nanoparticles under High Pressure. ACS Appl. Mater. Interfaces 2018, 10, 42856–42864. 10.1021/acsami.8b15259. PubMed DOI

Shirsath S. E.; Liu X.; Assadi M. H. N.; Younis A.; Yasukawa Y.; Karan S. K.; Zhang J.; Kim J.; Wang D.; Morisako A.; Yamauchi Y.; Li S. Au quantum dots engineered room temperature crystallization and magnetic anisotropy in CoFe2O4 thin films. Nanoscale Horiz. 2019, 4, 434–444. 10.1039/C8NH00278A. PubMed DOI

Manikandan V.; Mirzaei A.; Vigneselvan S.; Kavita S.; Mane R. S.; Kim S. S.; Chandrasekaran J. Role of Ruthenium in the Dielectric, Magnetic Properties of Nickel Ferrite (Ru–NiFe2O4) Nanoparticles and Their Application in Hydrogen Sensors. ACS Omega 2019, 4, 12919–12926. 10.1021/acsomega.9b01562. PubMed DOI PMC

Shirsath S. E.; Jadhav S. S.; Patange S. M.; Jadhav K. M.; Toksha B. G. Influence of Ce4+ Ions on the Structural and Magnetic Properties of NiFe2O4. J. Appl. Phys. 2011, 110, 01391410.1063/1.3603004. DOI

Yang Y.; Li M.; Wu Y.; Zong B.; Ding J. Size-dependent microwave absorption properties of Fe3O4 nanodiscs. RSC Adv. 2016, 6, 25444–25448. 10.1039/C5RA28035D. DOI

Yan A.; Liu X.; Yi R.; Shi R.; Zhang N.; Qiu G. Selective Synthesis and Properties of Monodisperse Zn Ferrite Hollow Nanospheres and Nanosheets. J. Phys. Chem. C 2008, 112, 8558–8563. 10.1021/jp800997z. DOI

Ayyappan S.; Philip J.; Raj B. Effect of Digestion Time on Size and Magnetic Properties of Spinel CoFe2O4 Nanoparticles. J. Phys. Chem. C 2009, 113, 590–596. 10.1021/jp8083875. DOI

Winiarska K.; Szczygieł I.; Klimkiewicz R. Manganese–Zinc Ferrite Synthesis by the Sol–Gel Autocombustion Method. Effect of the Precursor on the Ferrite’s Catalytic Properties. Ind. Eng. Chem. Res. 2013, 52, 353–361. 10.1021/ie301658q. DOI

Liu C.; Zou B.; Rondinone A. J.; Zhang Z. J. Reverse Micelle Synthesis and Characterization of Superparamagnetic MnFe2O4 Spinel Ferrite Nanocrystallites. J. Phys. Chem. B 2000, 104, 1141–1145. 10.1021/jp993552g. DOI

Toksha B. G.; Shirsath S. E.; Mane M. L.; Patange S. M.; Jadhav S. S.; Jadhav K. M. Autocombustion High-Temperature Synthesis, Structural, and Magnetic Properties of CoCrxFe2-xO4 (0 ≤ x ≤ 1.0). J. Phys. Chem. C 2011, 115, 20905–20912. 10.1021/jp205572m. DOI

Shirsath S. E.; Wang D.; Jadhav S. S.; Mane M. L.; Li S.. Ferrites Obtained by Sol-Gel Method. Handbook of Sol-Gel Scienceand Technology; Klein L.; Aparicio M.; Jitianu A., Eds.; Springer: Cham, 2018; pp 695–735.

Iqbal S.; Khatoon H.; Kotnala R. K.; Ahmad S. Mesoporous strontium ferrite/polythiophene composite: Influence of enwrappment on structural, thermal, and electromagnetic interference shielding. Composites, Part B 2019, 175, 10714310.1016/j.compositesb.2019.107143. DOI

Gupta S.; Tai N.-H. Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog. Energy Combust. Sci. 2019, 75, 10078610.1016/j.pecs.2019.100786. DOI

Cheng H.; Wei S.; Ji Y.; Zhai J.; Zhang X.; Chen J.; Shen C. Synergetic effect of Fe3O4 nanoparticles and carbon on flexible poly (vinylidence fluoride) based films with higher heat dissipation to improve electromagnetic shielding. Composites, Part A 2019, 121, 139–148. 10.1016/j.compositesa.2019.03.019. DOI

Kumar R.; Macedo W. C. Jr.; Singh R. K.; Tiwari V. S.; Constantino C. J. L.; Matsuda A.; Moshkalev S. A. Nitrogen-Sulfur Co-Doped Reduced Graphene Oxide-Nickel Oxide Nanoparticle Composites for Electromagnetic Interference Shielding. ACS Appl. Nano Mater 2019, 2, 4626–4636. 10.1021/acsanm.9b01002. DOI

Yang J.; Liao X.; Li J.; He G.; Zhang Y.; Tang W.; Wang G.; Li G. Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption. Compos. Sci. Technol. 2019, 181, 10767010.1016/j.compscitech.2019.05.027. DOI

Kumar R.; Alaferdov A. V.; Singh R. K.; Singh A. K.; Shah J.; Kotnala R. K.; Singh K.; Suda Y.; Moshkalev S. A. Self-assembled nanostructures of 3D hierarchical faceted-iron oxide containing vertical carbon nanotubes on reduced graphene oxide hybrids for enhanced electromagnetic interface shielding. Composites, Part B 2019, 168, 66–76. 10.1016/j.compositesb.2018.12.047. DOI

Sang G.; Dong J.; He X.; Jiang J.; Li J.; Xu P.; Ding Y. Electromagnetic interference shielding performance of polyurethane composites: A comparative study of GNs-IL/Fe3O4 and MWCNTs-IL/Fe3O4 hybrid fillers. Composites, Part B 2019, 164, 467–475. 10.1016/j.compositesb.2019.01.062. DOI

Hu Y.; Li D.; Wu L.; Yang J.; Jian X.; Bin Y. Carbon nanotube buckypaper and buckypaper/polypropylene composites for high shielding effectiveness and absorption-dominated shielding material. Compos. Sci. Technol. 2019, 181, 10769910.1016/j.compscitech.2019.107699. DOI

Sharika T.; Abraham J.; Arif P M.; George S. C.; Kalarikkal N.; Thomas S. Excellent electromagnetic shield derived from MWCNT reinforced NR/PP blend nanocomposites with tailored microstructural properties. Composites, Part B 2019, 173, 10679810.1016/j.compositesb.2019.05.009. DOI

Yadav R. S.; Kuřitka I.; Vilcakova J.; Skoda D.; Urbánek P.; Machovsky M.; Masař M.; Kalina L.; Havlica J. Lightweight NiFe2O4-Reduced Graphene Oxide-Elastomer Nanocomposite flexible sheet for electromagnetic interference shielding application. Composites, Part B 2019, 166, 95–111. 10.1016/j.compositesb.2018.11.069. DOI

Yadav R. S.; Kuritka I.; Vilcáková J.; Machovský M.; Škoda D.; Urbánek P.; Masar M.; Goralik M.; Urbánek M.; Kalina L.; Havlica J. Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Application. Nanomaterials 2019, 9, 621.10.3390/nano9040621. PubMed DOI PMC

Yadav R. S.; Havlica J.; Masilko J.; Kalina L.; Wasserbauer J.; Hajdúchová M.; Enev V.; Kuřitka I.; Kožáková Z. Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. J. Magn. Magn. Mater. 2015, 394, 439–447. 10.1016/j.jmmm.2015.07.012. DOI

Mondal B.; Kundu M.; Mandal S. P.; Saha R.; Roy U. K.; Roychowdhury A.; Das D. Sonochemically Synthesized Spin-Canted CuFe2O4 Nanoparticles for Heterogeneous Green Catalytic Click Chemistry. ACS Omega 2019, 4, 13845–13852. 10.1021/acsomega.9b01477. PubMed DOI PMC

Srivastava R. K.; Xavier P.; Gupta S. N.; Kar G. P.; Bose S.; Sood A. K. Excellent Electromagnetic Interference Shielding by Graphene- MnFe2O4-Multiwalled Carbon Nanotube Hybrids at Very Low Weight Percentage in Polymer Matrix. ChemistrySelect 2016, 1, 5995–6003. 10.1002/slct.201601302. DOI

Pham P. V. A Library of Doped-Graphene Images via Transmission Electron Microscopy. C 2018, 4, 34.10.3390/c4020034. DOI

Fu S.; Sun Z.; Huang P.; Li Y.; Hu N. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science 2019, 1, 2–30. 10.1016/j.nanoms.2019.02.006. DOI

Alam F. E.; Yu J.; Shen D.; Dai W.; Li H.; Zeng X.; Yao Y.; Du S.; Jiang N.; Lin C.-T. Highly Conductive 3D Segregated Graphene Architecture in Polypropylene Composite with Efficient EMI Shielding. Polymers 2017, 9, 662.10.3390/polym9120662. PubMed DOI PMC

Chakradhary V. K.; Ansaria A.; Akhtara M. J. Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications. J. Magn. Magn. Mater. 2019, 469, 674–680. 10.1016/j.jmmm.2018.09.021. DOI

Roca A. G.; Niznansky D.; Poltierova-Vejpravova J.; Bittova B.; González-Fernández M. A.; Serna C. J.; Morales M. P. Magnetite nanoparticles with no surface spin canting. J. Appl. Phys. 2009, 105, 11430910.1063/1.3133228. DOI

Saffari F.; Kamelin P.; Rahimi M.; Ahmadvand H.; Salamati H. Effects of Co-substitution on the structural and magnetic properties of NiCoxFe2-xO4 ferrite nanoparticles. Ceramics Int. 2015, 41, 7352–7358. 10.1016/j.ceramint.2015.02.038. DOI

Manju B. G.; Raji P. Synthesis and magnetic properties of nano-sized Cu0.5Ni0.5Fe2O4 via citrate and aloe vera: A comparative study. Ceramics Int. 2018, 44, 7329–7333. 10.1016/j.ceramint.2018.01.201. DOI

Kambale R. C.; Song K. M.; Koo Y. S.; Hur N. Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 2011, 110, 05391010.1063/1.3632987. DOI

Liu Y.; Chen Z.; Zhang Y.; Feng R.; Chen X.; Xiong C.; Dong L. Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFe2O4/Reduced Graphene Oxide Porous Nanocomposites. ACS Appl. Mater. Interfaces 2018, 10, 13860–13868. 10.1021/acsami.8b02137. PubMed DOI

Li J.; Zhang G.; Ma Z.; Fan X.; Fan X.; Qin J.; Shi X. Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams. Compos. Sci. Technol. 2016, 129, 70–78. 10.1016/j.compscitech.2016.04.003. DOI

Zhang H.-B.; Yan Q.; Zheng W.-G.; He Z.; Yu Z.-Z. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. 10.1021/am200021v. PubMed DOI

Liu H.; Liang C.; Chen J.; Huang Y.; Cheng F.; Wen F.; Xu B.; Wang B. Novel 3D network porous graphene nanoplatelets/Fe3O4/epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 2019, 169, 103–109. 10.1016/j.compscitech.2018.11.005. DOI

Zhang H.; Zhang G.; Li J.; Fan X.; Jing Z.; Li J.; Shi X. Lightweight, multifunctional microcellular PMMA/Fe3O4@MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Composites, Part A 2017, 100, 128–138. 10.1016/j.compositesa.2017.05.009. DOI

Ji J.; Huang Y.; Yin J.; Zhao X.; Cheng X.; He J.; Wang J.; Li X.; Liu J. Electromagnetic Wave Absorption Performance on Fe3O4 Polycrystalline Synthesized by the Synergy Reduction of Ethylene Glycol and Diethylene Glycol. J. Phys. Chem. C 2018, 122, 3628–3637. 10.1021/acs.jpcc.7b11533. DOI

Yan L.; Wang X.; Zhao S.; Li Y.; Gao Z.; Zhang B.; Cao M.; Qin Y. Highly Efficient Microwave Absorption of Magnetic Nanospindle-Conductive Polymer Hybrids by Molecular Layer Deposition. ACS Appl. Mater. Interfaces 2017, 9, 11116–11125. 10.1021/acsami.6b16864. PubMed DOI

Kumaran R.; Alagar M.; Kumar S. D.; Subramanian V.; Dinakaran K. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thin films. Appl. Phys. Lett. 2015, 107, 11310710.1063/1.4931125. DOI

Pawar S. P.; Kumar S.; Jain S.; Gandi M.; Chatterjee K.; Bose S. Synergistic interactions between silver decorated graphene and carbon nanotubes yield flexible composites to attenuate electromagnetic radiation. Nanotechnology 2017, 28, 02520110.1088/0957-4484/28/2/025201. PubMed DOI

Liu W.; Liu J.; Yang Z.; Ji G. Extended Working Frequency of Ferrites by Synergistic Attenuation through a Controllable Carbothermal Route Based on Prussian Blue Shell. ACS Appl. Mater. Interfaces 2018, 10, 28887–28897. 10.1021/acsami.8b09682. PubMed DOI

Lv H.; Zhang H.; Ji G.; Xu Z. J. Interface Strategy To Achieve Tunable High Frequency Attenuation. ACS Appl. Mater. Interfaces 2016, 8, 6529–6538. 10.1021/acsami.5b12662. PubMed DOI

Singh S. K.; Akhtar M. J.; Kar K. K. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber. ACS Appl. Mater. Interfaces 2018, 10, 24816–24828. 10.1021/acsami.8b06673. PubMed DOI

Zong M.; Huang Y.; Zhao Y.; Sun X.; Qu C.; Luo D.; Zheng J. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO/Fe3O4 composites. RSC Adv. 2013, 3, 23638–23648. 10.1039/c3ra43359e. DOI

Zeng Q.; Xiong X.-H.; Chen P.; Yu Q.; Wang Q.; Wang R.-C.; Chu H.-R. Air@rGO€Fe3O4 microspheres with spongy shell: self-assembly and microwave absorption performance. J. Mater. Chem. C 2016, 4, 10518–10528. 10.1039/C6TC03780A. DOI

Web B.; Lu M.; Cao W.; Shi H.; Liu J.; Wang X.; Jin H.; Fang X.; Wang W.; Yuan J.; et al. Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures. Adv. Mater 2014, 26, 3484–3489. 10.1002/adma.201400108. PubMed DOI

Xu F.; Chen R.; Lin Z.; Qin Y.; Yuan Y.; Li Y.; Zhao X.; Yang M.; Sun X.; Wang S.; Peng Q.; Li Y.; He X. Superflexible Interconnected Graphene Network Nanocomposites for High-Performance Electromagnetic Interference Shielding. ACS Omega 2018, 3, 3599–3607. 10.1021/acsomega.8b00432. PubMed DOI PMC

van der Zaag P. J. New Views on the Dissipation in Soft Magnetic Ferrites. J. Magn. Magn. Mater. 1999, 196–197, 315–319. 10.1016/S0304-8853(98)00732-X. DOI

Liu X. G.; Geng D. Y.; Cui W. B.; Yang F.; Xie Z. G.; Kang D. J.; Zhang Z. D. (Fe, Ni)/C Nanocapsules for Electromagnetic-wave-absorber in the Whole Ku-band. Carbon 2009, 47, 470–474. 10.1016/j.carbon.2008.10.028. DOI

Zhu Z.; Sun X.; Xue H.; Guo H.; Fan X.; Pan X.; He J. Graphene/Carbonyl Iron Cross-Linked Composites with Excellent Electromagnetic Wave Absorption Properties. J. Mater. Chem. C 2014, 2, 6582–6591. 10.1039/C4TC00757C. DOI

Movassagh-Alanagh F.; Bordbar-Khiabani A.; Ahangari-Asl A. Three-phase PANI@nano-Fe3O4@CFs heterostructure: Fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite. Compos. Sci. Technol. 2017, 150, 65–78. 10.1016/j.compscitech.2017.07.010. DOI

Wu M.; Zhang Y. D.; Hui S.; Xiao T. D.; Ge S.; Hines W. A.; Budnick J. I.; Taylor G. W. Microwave magnetic properties of Co50 /(SiO2)50 nanoparticles. Appl. Phys. Lett. 2002, 80, 4404.10.1063/1.1484248. DOI

Chen Y.-J.; Gao P.; Wang R.-X.; Zhu C.-L.; Wang L.-J.; Cao M.-S.; Jin H.-B. Porous Fe3O4/SnO2 Core/Shell Nanorods: Synthesis and Electromagnetic Properties. J. Phys. Chem. C 2009, 113, 10061–10064. 10.1021/jp902296z. DOI

Zhu C.-L.; Zhang M.-L.; Qiao Y.-J.; Xiao G.; Zhang F.; Chen Y.-J. Fe3O4/TiO2 Core/Shell Nanotubes: Synthesis and Magnetic and Electromagnetic Wave Absorption Characteristics. J. Phys. Chem. C 2010, 114, 16229–16235. 10.1021/jp104445m. DOI

Kumar R.; Kaur A. Effect of various reduction methods of graphene oxide on electromagnetic shielding performance of reduced graphene oxide against electromagnetic pollution in X-band frequency. Materials Today. Communications 2018, 16, 374–379. 10.1016/j.mtcomm.2017.11.001. DOI

Zhang Y.; Yang Z.; Wen B. An Ingenious Strategy to Construct Helical Structure with Excellent Electromagnetic Shielding Performance. Adv. Mater. Interfaces 2019, 190037510.1002/admi.201900375. DOI

Menon A. V.; Madras G.; Bose S. Light weight, ultrathin, and “thermally-clickable” self-healing MWNT patch as electromagnetic interference suppressor. Chem. Eng. J. 2019, 366, 72–82. 10.1016/j.cej.2019.02.086. DOI

Yang Z.; Zhang Y.; Wen B. Enhanced electromagnetic interference shielding capability in bamboo fiber@polyaniline composites through microwave reflection cavity design. Compos. Sci. Technol. 2019, 178, 41–49. 10.1016/j.compscitech.2019.04.023. DOI

Ghosh S.; Remanan S.; Mondal S.; Ganguly S.; Das P.; Singh N.; Das N. Ch. An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chem. Eng. J. 2018, 344, 138–154. 10.1016/j.cej.2018.03.039. DOI

Quan B.; Liang X.; Ji G.; Lv J.; Dai S. S.; Xu G.; Du Y. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 2018, 129, 310–320. 10.1016/j.carbon.2017.12.026. DOI

Xu W.; Wang G.-S.; Yin P.-G. Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 2018, 139, 759–767. 10.1016/j.carbon.2018.07.044. DOI

Liang J.-Z. Effects of tension rates and filler size on tensile properties of polypropylene/graphene nano-platelets composites. Composites, Part B 2019, 167, 241–249. 10.1016/j.compositesb.2018.12.035. DOI

Dang C.-Y.; Shen X.-J.; Nie H.-J.; Yang S.; Shen J.-X.; Yang X.-H.; Fu S.-Y. Enhanced interlaminar shear strength of ramie fiber/polypropylene composites by optimal combination of graphene oxide size and content. Composites, Part B 2019, 168, 488–495. 10.1016/j.compositesb.2019.03.080. DOI

Eichner E.; Heinrich S.; Schneider G. A. Influence of particle shape and size on mechanical properties in copper-polymer composites. Powder Technol. 2018, 339, 39–45. 10.1016/j.powtec.2018.07.100. DOI

Bai Y.; Rakhi R. B.; Chen W.; Alshareef H. N. Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance. J. Power Sources 2013, 233, 313–319. 10.1016/j.jpowsour.2013.01.122. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...