High thermal variation in maximum temperatures invert Brett's heat-invariant rule at fine spatial scales

. 2025 Jun ; 106 (6) : e70124.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40464330

Grantová podpora
NSF DEB-2054569 National Science Foundation
2020AEP112_CSIC Consejo Superior de Investigaciones Científicas
CGL2017-86924-P Ministerio de Ciencia, Innovación y Universidades
PID2022-140618NB-I00 Ministerio de Ciencia, Innovación y Universidades

Discovering how species' thermal limits evolve and vary spatially is crucial for predicting their vulnerability to ongoing environmental warming. Current evidence indicates that heat tolerance is less spatially variable than cold tolerance among species, presenting a major concern for organismal vulnerability in a rapidly warming world. This asymmetry in thermal limits has been supported by large-scale geographic studies, across latitudinal and elevational gradients (known as Brett's heat-invariant rule). Yet, how critical limits vary across finer spatial scales (e.g., across microenvironments) is less understood. Here, we show that minimum temperatures are more variable than maximum temperatures at large geographic scales (across latitude/elevation) but are less variable at local scales (within sites), in turn guiding spatial asymmetries in thermal tolerances. Using thermal tolerance measurements from amphibians, insects, and reptiles, we confirm the invariance of heat tolerance at large spatial scales and also find more variable heat than cold tolerances at local scales (an inverted Brett's heat-invariant rule at fine spatial scales). Our results suggest that regional- or global-level studies will likely obscure fine-scale structuring in thermal habitats and corresponding patterns of local heat tolerance adaptation. We emphasize that inferences based on broadscale geographic patterns obscure fine-scale variation in thermal physiology. For instance, a genetic basis for fine-scale variation in thermal physiology may reshuffle spatial and phylogenetic patterns of vulnerability.

Zobrazit více v PubMed

Agudelo‐Cantero, G. A. , and Navas C. A.. 2019. “Interactive Effects of Experimental Heating Rates, Ontogeny and Body Mass on the Upper Thermal Limits of Anuran Larvae.” Journal of Thermal Biology 82: 43–51. 10.1016/j.jtherbio.2019.03.010. PubMed DOI

Angilletta, M. J. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford: Oxford University Press.

Araújo, M. B. , Ferri‐Yáñez F., Bozinovic F., Marquet P. A., Valladares F., and Chown S. L.. 2013. “Heat Freezes Niche Evolution.” Ecology Letters 16: 1206–1219. 10.1111/ele.12155. PubMed DOI

Barrett, R. D. H. , Paccard A., Healy T. M., Bergek S., Schulte P. M., Schluter D., and Rogers S. M.. 2011. “Rapid Evolution of Cold Tolerance in Stickleback.” Proceedings of the Royal Society B: Biological Sciences 278: 233–238. 10.1098/rspb.2010.0923. PubMed DOI PMC

Bates, D. , Mächler M., Bolker B., and Walker S.. 2015. “Fitting Linear Mixed‐Effects Models Using lme4.” Journal of Statistical Software 67(1): 1–48. 10.18637/jss.v067.i01. DOI

Battey, C. J. , Otero L. M., Gorman G. C., Hertz P. E., Lister B. C., García A., Burrowes P. A., and Huey R. B.. 2019. “Why Montane Anolis Lizards Are Moving Downhill while Puerto Rico Warms.” bioRxiv: 751941. 10.1101/751941. DOI

Baudier, K. M. , D'Amelio C. L., Malhotra R., O'Connor M. P., and O'Donnell S.. 2018. “Extreme Insolation: Climatic Variation Shapes the Evolution of Thermal Tolerance at Multiple Scales.” The American Naturalist 192: 347–359. 10.1086/698656. PubMed DOI

Bennett, A. F. , and John‐Alder H.. 1986. “Thermal Relations of some Australian Skinks (Sauria: Scincidae).” Copeia 1986: 57–64. 10.2307/1444888. DOI

Bennett, J. M. , Calosi P., Clusella‐Trullas S., Martínez B., Sunday J. M., Algar A. C., Araújo M. B., et al. 2018. “GlobTherm, a Global Database on Thermal Tolerances for Aquatic and Terrestrial Organisms.” Scientific Data 5: 180022. 10.1038/sdata.2018.22. PubMed DOI PMC

Bennett, J. M. , Sunday J., Calosi P., Villalobos F., Martínez B., Molina‐Venegas R., Araújo M. B., et al. 2021. “The Evolution of Critical Thermal Limits of Life on Earth.” Nature Communications 12(1): 1198. 10.1038/s41467-021-21263-8. PubMed DOI PMC

Bishop, T. R. , Robertson M. P., Van Rensburg B. J., and Parr C. L.. 2017. “Coping with the Cold: Minimum Temperatures and Thermal Tolerances Dominate the Ecology of Mountain Ants.” Ecological Entomology 42: 105–114. 10.1111/een.12364. DOI

Bitter, M. C. , Wong J. M., Dam H. G., Donelan S. C., Kenkel C. D., Komoroske L. M., Nickols K. J., et al. 2021. “Fluctuating Selection and Global Change:A Synthesis and Review on Disentangling Theroles of Climate Amplitude, Predictability Andnovelty.” Proceedings of the Royal Society B: Biological Sciences 288(1957): 20210727. 10.1098/rspb.2021.0727. PubMed DOI PMC

Bodensteiner, B. L. , Agudelo‐Cantero G. A., Arietta A. Z. A., Gunderson A. R., Muñoz M. M., Refsnider J. M., and Gangloff E. J.. 2021. “Thermal Adaptation Revisited: How Conserved Are Thermal Traits of Reptiles and Amphibians?” Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 335: 173–194. 10.1002/jez.2414. PubMed DOI

Bodensteiner, B. L. , Burress E. D., and Muñoz M. M.. 2024. “Adaptive Radiation without Independent Stages of Trait Evolution in a Group of Caribbean Anoles.” Systematic Biology 73(5): syae041. 10.1093/sysbio/syae041. PubMed DOI

Bogert, C. M. 1949. “Thermoregulation, a Factor in Reptile Evolution.” Evolution 3: 195–211. 10.2307/2405558. PubMed DOI

Bota‐Sierra, C. A. , García‐Robledo C., Escobar F., Novelo‐Gutiérrez R., and Londoño G. A.. 2022. “Environment, Taxonomy and Morphology Constrain Insect Thermal Physiology along Tropical Mountains.” Functional Ecology 36: 1924–1935. 10.1111/1365-2435.14083. DOI

Bozinovic, F. , Orellana M. J. M., Martel S. I., and Bogdanovich J. M.. 2014. “Testing the Heat‐Invariant and Cold‐Variability Tolerance Hypotheses across Geographic Gradients.” Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 178: 46–50. 10.1016/j.cbpa.2014.08.009. PubMed DOI

Brett, J. R. 1956. “Some Principles in the Thermal Requirements of Fishes.” The Quarterly Review of Biology 31: 75–87. 10.1086/401257. DOI

Buckley, L. B. , Miller E. F., and Kingsolver J. G.. 2013. “Ectotherm Thermal Stress and Specialization across Altitude and Latitude.” Integrative and Comparative Biology 53: 571–581. 10.1093/icb/ict026. PubMed DOI

Calosi, P. , Bilton D. T., Spicer J. I., Votier S. C., and Atfield A.. 2010. “What Determines a Species' Geographical Range? Thermal Biology and Latitudinal Range Size Relationships in European Diving Beetles (Coleoptera: Dytiscidae).” Journal of Animal Ecology 79: 194–204. 10.1111/j.1365-2656.2009.01611.x. PubMed DOI

Chen, I. C. , Hill J. K., Ohlemüller R., Roy D. B., and Thomas C. D.. 2011. “Rapid Range Shifts of Species Associated with High Levels of Climate Warming.” Science 333: 1024–1026. 10.1126/science.1206432. PubMed DOI

Chown, S. L. , and Gaston K. J.. 2016. “Macrophysiology – Progress and Prospects.” Functional Ecology 30: 330–344. 10.1111/1365-2435.12510. DOI

Clarke, A. 2003. “Costs and Consequences of Evolutionary Temperature Adaptation.” Trends in Ecology & Evolution 18: 573–581. 10.1016/j.tree.2003.08.007. DOI

Colwell, R. K. , Brehm G., Cardelús C. L., Gilman A. C., and Longino J. T.. 2008. “Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics.” Science 322: 258–261. 10.1126/science.1162547. PubMed DOI

Cruz, F. B. , Belver L., Acosta J. C., Villavicencio H. J., Blanco G., and Cánovas M. G.. 2009. “Thermal Biology of Phymaturus Lizards: Evolutionary Constraints or Lack of Environmental Variation?” Zoology 112: 425–432. 10.1016/j.zool.2009.03.004. PubMed DOI

Cruz, F. B. , Fitzgerald L. A., Espinoza R. E., and Schulte I. J. A.. 2005. “The Importance of Phylogenetic Scale in Tests of Bergmann's and Rapoport's Rules: Lessons from a Clade of South American Lizards.” Journal of Evolutionary Biology 18: 1559–1574. 10.1111/j.1420-9101.2005.00936.x. PubMed DOI

da Silva, C. R. B. , Beaman J. E., Youngblood J. P., Kellermann V., and Diamond S. E.. 2023. “Vulnerability to Climate Change Increases with Trophic Level in Terrestrial Organisms.” Science of the Total Environment 865: 161049. 10.1016/j.scitotenv.2022.161049. PubMed DOI

Deutsch, C. A. , Tewksbury J. J., Huey R. B., Sheldon K. S., Ghalambor C. K., Haak D. C., and Martin P. R.. 2008. “Impacts of Climate Warming on Terrestrial Ectotherms across Latitude.” Proceedings of the National Academy of Sciences of the United States of America 105: 6668–6672. 10.1073/pnas.0709472105. PubMed DOI PMC

Diamond, S. E. , Chick L. D., Perez A., Strickler S. A., and Martin R. A.. 2018. “Evolution of Thermal Tolerance and Its Fitness Consequences: Parallel and Non‐Parallel Responses to Urban Heat Islands across Three Cities.” Proceedings of the Royal Society B: Biological Sciences 285: 20180036. 10.1098/rspb.2018.0036. PubMed DOI PMC

Duarte, H. , Tejedo M., Katzenberger M., Marangoni F., Baldo D., Beltrán J. F., Martí D. A., Richter‐Boix A., and Gonzalez‐Voyer A.. 2012. “Can Amphibians Take the Heat? Vulnerability to Climate Warming in Subtropical and Temperate Larval Amphibian Communities.” Global Change Biology 18: 412–421. 10.1111/j.1365-2486.2011.02518.x. DOI

Fox, J. , and Weisberg S.. 2019. An R Companion to Applied Regression, 3rd ed. Thousand Oaks, CA: Sage Publications. http://z.umn.edu/carbook.

Franken, O. , Huizinga M., Ellers J., and Berg M. P.. 2018. “Heated Communities: Large Inter‐ and Intraspecific Variation in Heat Tolerance across Trophic Levels of a Soil Arthropod Community.” Oecologia 186: 311–322. 10.1007/s00442-017-4032-z. PubMed DOI PMC

Frishkoff, L. O. , Gabot E., Sandler G., Marte C., and Mahler D. L.. 2019. “Elevation Shapes the Reassembly of Anthropocene Lizard Communities.” Nature Ecology & Evolution 3: 638–646. 10.1038/s41559-019-0819-0. PubMed DOI

Frishkoff, L. O. , Hadly E. A., and Daily G. C.. 2015. “Thermal Niche Predicts Tolerance to Habitat Conversion in Tropical Amphibians and Reptiles.” Global Change Biology 21: 3901–3916. 10.1111/gcb.13016. PubMed DOI

Gaston, K. J. , Chown S. L., Calosi P., Bernardo J., Bilton D. T., Clarke A., Clusella‐Trullas S., et al. 2009. “Macrophysiology: A Conceptual Reunification.” The American Naturalist 174: 595–612. 10.1086/605982. PubMed DOI

Ghalambor, C. K. , Huey R. B., Martin P. R., Tewksbury J. J., and Wang G.. 2006. “Are Mountain Passes Higher in the Tropics? Janzen's Hypothesis Revisited.” Integrative and Comparative Biology 46: 5–17. 10.1093/icb/icj003. PubMed DOI

Gunderson, A. R. , Mahler D. L., and Leal M.. 2018. “Thermal Niche Evolution across Replicated Anolis Lizard Adaptive Radiations.” Proceedings of the Royal Society B 285: 20172241. 10.1098/rspb.2017.2241. PubMed DOI PMC

Guo, Q. , Chen A., Crockett E. T. H., Atkins J. W., Chen X., and Fei S.. 2023. “Integrating Gradient with Scale in Ecological and Evolutionary Studies.” Ecology 104: e3982. 10.1002/ecy.3982. PubMed DOI

Gutiérrez‐Pesquera, L. M. , Tejedo M., Olalla‐Tárraga M. Á., Duarte H., Nicieza A., and Solé M.. 2016. “Testing the Climate Variability Hypothesis in Thermal Tolerance Limits of Tropical and Temperate Tadpoles.” Journal of Biogeography 43: 1166–1178. 10.1111/jbi.12700. DOI

Hedges, S. B. , Dudley J., and Kumar S.. 2006. “TimeTree: A Public Knowledge‐Base of Divergence Times among Organisms.” Bioinformatics 22: 2971–2972. PubMed

Herrando‐Pérez, S. , Monasterio C., Beukema W., Gomes V., Ferri‐Yáñez F., Vieites D. R., Buckley L. B., and Araújo M. B.. 2020. “Heat Tolerance Is more Variable than Cold Tolerance across Species of Iberian Lizards after Controlling for Intraspecific Variation.” Functional Ecology 34: 631–645. 10.1111/1365-2435.13507. DOI

Huang, S. M. , Huang S. P., Chen Y. H., and Tu M. C.. 2007. “Thermal Tolerance and Altitudinal Distribution of Three Trimeresurus Snakes (Viperidae: Crotalinae) in Taiwan.” Zoological Studies 46: 592–599.

Huang, S. P. , Hsu Y., and Tu M. C.. 2006. “Thermal Tolerance and Altitudinal Distribution of Two Sphenomorphus Lizards in Taiwan.” Journal of Thermal Biology 31: 378–385. 10.1016/j.jtherbio.2005.11.032. DOI

Huey, R. B. , Deutsch C. A., Tewksbury J. J., Vitt L. J., Hertz P. E., Álvarez Pérez H. J., and Garland T.. 2009. “Why Tropical Forest Lizards Are Vulnerable to Climate Warming.” Proceedings of the Royal Society B: Biological Sciences 276: 1939–1948. 10.1098/rspb.2008.1957. PubMed DOI PMC

Huey, R. B. , Hertz P. E., and Sinervo B.. 2003. “Behavioral Drive Versus Behavioral Inertia in Evolution: A Null Model Approach.” American Naturalist 161: 357–366. 10.1086/346135. PubMed DOI

Janzen, D. H. 1967. “Why Mountain Passes Are Higher in the Tropics.” The American Naturalist 101: 233–247. 10.1086/282487. DOI

Käfer, H. , Kovac H., Simov N., Battisti A., Erregger B., Schmidt A. K. D., and Stabentheiner A.. 2020. “Temperature Tolerance and Thermal Environment of European Seed Bugs.” Insects 11: 197. 10.3390/insects11030197. PubMed DOI PMC

Kaspari, M. , Clay N. A., Lucas J., Yanoviak S. P., and Kay A.. 2015. “Thermal Adaptation Generates a Diversity of Thermal Limits in a Rainforest Ant Community.” Global Change Biology 21: 1092–1102. 10.1111/gcb.12750. PubMed DOI

Katzenberger, M. , Duarte H., Relyea R., Beltrán J. F., and Tejedo M.. 2021. “Variation in Upper Thermal Tolerance among 19 Species from Temperate Wetlands.” Journal of Thermal Biology 96: 102856. 10.1016/j.jtherbio.2021.102856. PubMed DOI

Kellermann, V. , Loeschcke V., Hoffmann A. A., Kristensen T. N., Fløjgaard C., David J. R., Svenning J.‐C., and Overgaard J.. 2012. “Phylogenetic Constraints in Key Functional Traits behind Species' Climate Niches: Patterns of Desiccation and Cold Resistance across 95 Drosophila Species.” Evolution 66: 3377–3389. 10.1111/j.1558-5646.2012.01685.x. PubMed DOI

Kellermann, V. , Overgaard J., Hoffmann A. A., Fløjgaard C., Svenning J.‐C., and Loeschcke V.. 2012. “Upper Thermal Limits of Drosophila Are Linked to Species Distributions and Strongly Constrained Phylogenetically.” Proceedings of the National Academy of Sciences of the United States of America 109: 16228–16233. 10.1073/pnas.1207553109. PubMed DOI PMC

Klok, C. J. , and Chown S. L.. 2003. “Resistance to Temperature Extremes in Sub‐Antarctic Weevils: Interspecific Variation, Population Differentiation and Acclimation.” Biological Journal of the Linnean Society 78: 401–414. 10.1046/j.1095-8312.2003.00154.x. DOI

Leahy, L. , Scheffers B. R., Williams S. E., and Andersen A. N.. 2022. “Arboreality Drives Heat Tolerance while Elevation Drives Cold Tolerance in Tropical Rainforest Ants.” Ecology 103: e03549. 10.1002/ecy.3549. PubMed DOI

Mammola, S. , Piano E., Malard F., Vernon P., and Isaia M.. 2019. “Extending Janzen's Hypothesis to Temperate Regions: A Test Using Subterranean Ecosystems.” Functional Ecology 33: 1638–1650. 10.1111/1365-2435.13382. DOI

Marsh, A. C. 1985. “Aspects of the Ecology of Namib Desert Ants.” PhD thesis, University of Cape Town.

Muñoz, M. M. 2022. “The Bogert Effect, a Factor in Evolution.” Evolution 76: 49–66. 10.1111/evo.14388. PubMed DOI

Muñoz, M. M. , and Bodensteiner B. L.. 2019. “Janzen's Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution.” Integrative Organismal Biology 1: 1–12. 10.1093/iob/oby002. PubMed DOI PMC

Muñoz, M. M. , Langham G. M., Brandley M. C., Rosauer D. F., Williams S. E., and Moritz C.. 2016. “Basking Behavior Predicts the Evolution of Heat Tolerance in Australian Rainforest Lizards.” Evolution 70: 2537–2549. 10.1111/evo.13064. PubMed DOI

Muñoz, M. M. , Stimola M. A., Algar A. C., Conover A., Rodriguez A. J., Landestoy M. A., Bakken G. S., and Losos J. B.. 2014. “Evolutionary Stasis and Lability in Thermal Physiology in a Group of Tropical Lizards.” Proceedings of the Royal Society of London B: Biological Sciences 281: 20132433. 10.1098/rspb.2013.2433. PubMed DOI PMC

Parmesan, C. , and Yohe G.. 2003. “A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems.” Nature 421: 37–42. 10.1038/nature01286. PubMed DOI

Pie, M. R. , Divieso R., Caron F. S., Siqueira A. C., Barneche D. R., and Luiz O. J.. 2021. “The Evolution of Latitudinal Ranges in Reef‐Associated Fishes: Heritability, Limits and Inverse Rapoport's Rule.” Journal of Biogeography 48: 2121–2132. 10.1111/jbi.14150. DOI

Pintanel, P. , Tejedo M., Enriquez‐Urzelai U., Domínguez‐Guerrero S. F., and Muñoz M.. 2025. “Data From: High Thermal Variation in Maximum Temperatures Invert Brett's Heat‐Invariant Rule at Fine Spatial Scales.” Figshare. 10.6084/m9.figshare.28845968.v2. PubMed DOI

Pintanel, P. , Tejedo M., Merino‐Viteri A., Almeida‐Reinoso F., Salinas‐Ivanenko S., López‐Rosero A. C., Llorente G. A., and Gutiérrez‐Pesquera L. M.. 2022. “Elevational and Local Climate Variability Predicts Thermal Breadth of Mountain Tropical Tadpoles.” Ecography 2022(5): e05906. 10.1111/ecog.05906. DOI

Pintanel, P. , Tejedo M., Ron S. R., Llorente G. A., and Merino‐Viteri A.. 2019. “Elevational and Microclimatic Drivers of Thermal Tolerance in Andean Pristimantis Frogs.” Journal of Biogeography 46: 1664–1675. 10.1111/jbi.13596. DOI

Pintanel, P. , Tejedo M., Salinas‐Ivanenko S., Jervis P., and Merino‐Viteri A.. 2021. “Predators Like It Hot: Thermal Mismatch in a Predator‐Prey System across an Elevational Tropical Gradient.” Journal of Animal Ecology 90: 1985–1995. 10.1111/1365-2656.13516. PubMed DOI

Polato, N. R. , Gill B. A., Shah A. A., Gray M. M., Casner K. L., Barthelet A., Messer P. W., et al. 2018. “Narrow Thermal Tolerance and Low Dispersal Drive Higher Speciation in Tropical Mountains.” Proceedings of the National Academy of Sciences of the United States of America 115: 12471–12476. 10.1073/pnas.1809326115. PubMed DOI PMC

Qu, Y.‐F. , and Wiens J. J.. 2020. “Higher Temperatures Lower Rates of Physiological and Niche Evolution.” Proceedings of the Royal Society B: Biological Sciences 287: 20200823. 10.1098/rspb.2020.0823. PubMed DOI PMC

R Core Team . 2024. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/.

Rendoll‐Cárcamo, J. , Contador T., Convey P., and Kennedy J.. 2020. “Sub‐Antarctic Freshwater Invertebrate Thermal Tolerances: An Assessment of Critical Thermal Limits and Behavioral Responses.” Insects 11: 102. 10.3390/insects11020102. PubMed DOI PMC

Roberts, C. S. , Seely M. K., Ward D., Mitchell D., and Campbell J. D.. 1991. “Body Temperatures of Namib Desert Tenebrionid Beetles: Their Relationship in Laboratory and Field.” Physiological Entomology 16: 463–475. 10.1111/j.1365-3032.1991.tb00586.x. DOI

Rubalcaba, J. G. , Gouveia S. F., Villalobos F., Olalla‐Tárraga M. A., and Sunday J.. 2023. “Climate Drives Global Functional Trait Variation in Lizards.” Nature Ecology & Evolution 7: 524–534. 10.1038/s41559-023-02007-x. PubMed DOI

Sasaki, M. , Barley J. M., Gignoux‐Wolfsohn S., Hays C. G., Kelly M. W., Putnam A. B., Sheth S. M., Sheth S. N., Villeneuve A. R., and Cheng B. S.. 2022. “Greater Evolutionary Divergence of Thermal Limits within Marine than Terrestrial Species.” Nature Climate Change 12(12): 1175–1180. 10.1038/s41558-022-01534-y. DOI

Scheffers, B. R. , Edwards D. P., Macdonald S. L., Senior R. A., Andriamahohatra L. R., Roslan N., Rogers A. M., Haugaasen T., Wright P., and Williams S. E.. 2017. “Extreme Thermal Heterogeneity in Structurally Complex Tropical Rain Forests.” Biotropica 49: 35–44. 10.1111/btp.12355. DOI

Scheffers, B. R. , Shoo L., Phillips B., Macdonald S. L., Anderson A., VanDerWal J., Storlie C., Gourret A., and Williams S. E.. 2017. “Vertical (Arboreality) and Horizontal (Dispersal) Movement Increase the Resilience of Vertebrates to Climatic Instability.” Global Ecology and Biogeography 26: 787–798. 10.1111/geb.12585. DOI

Shah, A. A. , Gill B. A., Encalada A. C., Flecker A. S., Funk W. C., Guayasamin J. M., Kondratieff B. C., et al. 2017. “Climate Variability Predicts Thermal Limits of Aquatic Insects across Elevation and Latitude.” Functional Ecology 31: 2118–2127. 10.1111/1365-2435.12906. DOI

Sheldon, K. S. , Huey R. B., Kaspari M., and Sanders N. J.. 2018. “Fifty Years of Mountain Passes: A Perspective on Dan Janzen's Classic Article.” The American Naturalist 191: 553–565. 10.1086/697046. PubMed DOI

Sinclair, B. J. , Marshall K. E., Sewell M. A., Levesque D. L., Willett C. S., Slotsbo S., Dong Y., et al. 2016. “Can we Predict Ectotherm Responses to Climate Change Using Thermal Performance Curves and Body Temperatures?” Ecology Letters 19: 1372–1385. 10.1111/ele.12686. PubMed DOI

Somero, G. N. , Lockwood B. L., and Tomaneck L.. 2017. Biochemical Adaptation Response to Environmental Challenges, from Life's Origins to the Anthropocene. Sunderland, MA: Sinauer Associates.

Spellerberg, I. F. 1972. “Temperature Tolerances of Southeast Australian Reptiles Examined in Relation to Reptile Thermoregulatory Behaviour and Distribution.” Oecologia 9: 23–46. 10.1007/bf00345241. PubMed DOI

Stevens, G. C. 1989. “The Latitudinal Gradient in Geographical Range: How So Many Species Coexist in the Tropics.” The American Naturalist 133: 240–256. 10.1086/284913. DOI

Stevens, G. C. 1992. “The Elevational Gradient in Altitudinal Range: An Extension of Rapoport's Latitudinal Rule to Altitude.” The American Naturalist 140: 893–911. 10.1086/285447. PubMed DOI

Stuart‐Smith, R. D. , Edgar G. J., and Bates A. E.. 2017. “Thermal Limits to the Geographic Distributions of Shallow‐Water Marine Species.” Nature Ecology & Evolution 1: 1846–1852. 10.1038/s41559-017-0353-x. PubMed DOI

Sunday, J. M. , Bates A. E., and Dulvy N. K.. 2011. “Global Analysis of Thermal Tolerance and Latitude in Ectotherms.” Proceedings of the Royal Society B: Biological Sciences 278: 1823–1830. 10.1098/rspb.2010.1295. PubMed DOI PMC

Sunday, J. M. , Bates A. E., Kearney M. R., Colwell R. K., Dulvy N. K., Longino J. T., and Huey R. B.. 2014. “Thermal‐Safety Margins and the Necessity of Thermoregulatory Behavior across Latitude and Elevation.” Proceedings of the National Academy of Sciences of the United States of America 111: 5610–5615. 10.1073/pnas.1316145111. PubMed DOI PMC

Sunday, J. M. , Bennett J. M., Calosi P., Clusella‐Trullas S., Gravel S., Hargreaves A. L., Leiva F. P., Verberk W. C. E. P., Olalla‐Tárraga M. Á., and Morales‐Castilla I.. 2019. “Thermal Tolerance Patterns across Latitude and Elevation.” Philosophical Transactions of the Royal Society B: Biological Sciences 374: 20190036. 10.1098/rstb.2019.0036. PubMed DOI PMC

van Berkum, F. H. 1986. “Evolutionary Patterns of the Thermal Sensitivity of Sprint Speed in Anolis Lizards.” Evolution 40: 594–604. 10.1111/j.1558-5646.1986.tb00510.x. PubMed DOI

van Berkum, F. H. 1988. “Latitudinal Patterns of the Thermal Sensitivity of Sprint Speed in Lizards.” The American Naturalist 132: 327–343. 10.1086/284856. DOI

van Heerwaarden, B. , Kellermann V., and Sgrò C. M.. 2016. “Limited Scope for Plasticity to Increase Upper Thermal Limits.” Functional Ecology 30: 1947–1956. 10.1111/1365-2435.12687. DOI

von May, R. , Catenazzi A., Corl A., Santa‐Cruz R., Carnaval A. C., and Moritz C.. 2017. “Divergence of Thermal Physiological Traits in Terrestrial Breeding Frogs along a Tropical Elevational Gradient.” Ecology and Evolution 7: 3257–3267. 10.1002/ece3.2929. PubMed DOI PMC

von May, R. , Catenazzi A., Santa‐Cruz R., Gutierrez A. S., Moritz C., and Rabosky D. L.. 2019. “Thermal Physiological Traits in Tropical Lowland Amphibians: Vulnerability to Climate Warming and Cooling.” PLoS One 14: e0219759. 10.1371/journal.pone.0219759. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...