High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+-Substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34723009
PubMed Central
PMC8552366
DOI
10.1021/acsomega.1c04192
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.
Leibniz Institute of Polymer Research Dresden 01069 Dresden Germany
Materials Research Centre Brno University of Technology Purkyňova 464 118 61200 Brno Czech Republic
Zobrazit více v PubMed
Yadav R. S.; Kuritka I.; Vilcakova J.. Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications, 1st ed.; Elsevier Publishing, 2020.
Huang Y.; Wang Y.; Li Z.; Yang Z.; Shen C.; He C. Effect of Pore Morphology on the Dielectric Properties of Porous Carbons for Microwave Absorption Applications. J. Phys. Chem. C 2014, 118, 26027–26032. 10.1021/jp506999k. DOI
Rehman S. U.; Liu J.; Fang Z.; Wang J.; Ahmed R.; Wang C.; Bi H. Heterostructured TiO2/C/Co from ZIF-67 Frameworks for Microwave-Absorbing Nanomaterials. ACS Appl. Nano Mater. 2019, 2, 4451–4461. 10.1021/acsanm.9b00841. DOI
Jian X.; Xiao X.; Deng L.; Tian W.; Wang X.; Mahmood N.; Dou S. Heterostructured Nanorings of Fe–Fe3O4@C Hybrid with Enhanced Microwave Absorption Performance. ACS Appl. Mater. Interfaces 2018, 10, 9369–9378. 10.1021/acsami.7b18324. PubMed DOI
Guan G.; Gao G.; Xiang J.; Yang J.; Gong L.; Chen X.; Zhang Y.; Zhang K.; Meng X. CoFe2/BaTiO3 Hybrid Nanofibers for Microwave Absorption. ACS Appl. Nano Mater. 2020, 3, 8424–8437. 10.1021/acsanm.0c01855. DOI
Li Y.; Gao T.; Zhang W.; Hu H.; Rong H.; Zhang X. Fe@CNx Nanocapsules for Microwave Absorption at Gigahertz Frequency. ACS Appl. Nano Mater. 2019, 2, 3648–3653. 10.1021/acsanm.9b00589. DOI
Bora P. J.; Azeem I.; Vinoy K. J.; Ramamurthy P. C.; Madras G. Polyvinylbutyral–Polyaniline Nanocomposite for High Microwave Absorption Efficiency. ACS Omega 2018, 3, 16542–16548. 10.1021/acsomega.8b02037. PubMed DOI PMC
Yadav R. S.; Anju; Jamatia T.; Kuřitka I.; Vilčáková J.; Škoda D.; Urbánek P.; Machovský M.; Masař M.; Urbánek M.; et al. Excellent, Lightweight and Flexible Electromagnetic Interference Shielding Nanocomposites Based on Polypropylene with MnFe2O4 Spinel Ferrite Nanoparticles and Reduced Graphene Oxide. Nanomaterials 2020, 10, 248110.3390/nano10122481. PubMed DOI PMC
Chen Y.; Pötschke P.; Pionteck J.; Voit B.; Qi H. Multifunctional Cellulose/rGO/Fe3O4 Composite Aerogels for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2020, 12, 22088–22098. 10.1021/acsami.9b23052. PubMed DOI
Han G.; Ma Z.; Zhou B.; He C.; Wang B.; Feng Y.; Ma J.; Sun L.; Liu C. Cellulose-Based Ni-Decorated Graphene Magnetic Film for Electromagnetic Interference Shielding. J. Colloid Interface Sci. 2021, 583, 571–578. 10.1016/j.jcis.2020.09.072. PubMed DOI
Acharya S.; Datar S. Wideband (8–18 GHz) Microwave Absorption Dominated Electromagnetic Interference (EMI) Shielding Composite Using Copper Aluminum Ferrite and Reduced Graphene Oxide in Polymer Matrix. J. Appl. Phys. 2020, 128, 10490210.1063/5.0009186. DOI
Fei Y.; Liang M.; Yan L.; Chen Y.; Zou H. Co/C@cellulose Nanofiber Aerogel Derived from Metal-Organic Frameworks for Highly Efficient Electromagnetic Interference Shielding. Chem. Eng. J. 2020, 392, 12481510.1016/j.cej.2020.124815. DOI
Shin B.; Mondal S.; Lee M.; Kim S.; Huh Y.-I.; Nah C. Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem. Eng. J. 2021, 418, 12928210.1016/j.cej.2021.129282. DOI
Huang S.-C.; Deng C.; Chen H.; Li Y.-M.; Zhao Z.-Y.; Wang S.-X.; Wang Y.-Z. Novel Ultrathin Layered Double Hydroxide Nanosheets with In Situ Formed Oxidized Phosphorus as Anions for Simultaneous Fire Resistance and Mechanical Enhancement of Thermoplastic Polyurethane. ACS Appl. Polym. Mater. 2019, 1, 1979–1990. 10.1021/acsapm.9b00203. DOI
Danda C.; Amurin L. G.; Muñoz P. A. R.; Nagaoka D. A.; Schneider T.; Troxell B.; Khani S.; Domingues S. H.; Andrade R. J. E.; Fechine G. J. M.; et al. Integrated Computational and Experimental Design of Ductile, Abrasion-Resistant Thermoplastic Polyurethane/Graphene Oxide Nanocomposites. ACS Appl. Nano Mater. 2020, 3, 9694–9705. 10.1021/acsanm.0c01740. DOI
Bhattacharjee Y.; Biswas S.; Bose S.. Thermoplastic Polymer Composites for EMI Shielding Applications. In Materials for Potential EMI Shielding Applications; Joseph K.; Wilson R.; George G., Eds.; Elsevier, 2020; Chapter 5, pp 73–99. ISBN 978-0-12-817590-3.
Sang G.; Dong J.; He X.; Jiang J.; Li J.; Xu P.; Ding Y. Electromagnetic Interference Shielding Performance of Polyurethane Composites: A Comparative Study of GNs-IL/Fe3O4 and MWCNTs-IL/Fe3O4 Hybrid Fillers. Composites, Part B 2019, 164, 467–475. 10.1016/j.compositesb.2019.01.062. DOI
Valentini M.; Piana F.; Pionteck J.; Lamastra F. R.; Nanni F. Electromagnetic Properties and Performance of Exfoliated Graphite (EG)—Thermoplastic Polyurethane (TPU) Nanocomposites at Microwaves. Compos. Sci. Technol. 2015, 114, 26–33. 10.1016/j.compscitech.2015.03.006. DOI
Jun Y.; Habibpour S.; Hamidinejad M.; Park M. G.; Ahn W.; Yu A.; Park C. B. Enhanced Electrical and Mechanical Properties of Graphene Nano-Ribbon/Thermoplastic Polyurethane Composites. Carbon 2021, 174, 305–316. 10.1016/j.carbon.2020.12.023. DOI
Shen B.; Li Y.; Zhai W.; Zheng W. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057. 10.1021/acsami.5b11715. PubMed DOI
Hsiao S.-T.; Ma C.-C. M.; Tien H.-W.; Liao W.-H.; Wang Y.-S.; Li S.-M.; Yang C.-Y.; Lin S.-C.; Yang R.-B. Effect of Covalent Modification of Graphene Nanosheets on the Electrical Property and Electromagnetic Interference Shielding Performance of a Water-Borne Polyurethane Composite. ACS Appl. Mater. Interfaces 2015, 7, 2817–2826. 10.1021/am508069v. PubMed DOI
Jia L.-C.; Yan D.-X.; Liu X.; Ma R.; Wu H.-Y.; Li Z.-M. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film. ACS Appl. Mater. Interfaces 2018, 10, 11941–11949. 10.1021/acsami.8b00492. PubMed DOI
Menon A. V.; Madras G.; Bose S. Ultrafast Self-Healable Interfaces in Polyurethane Nanocomposites Designed Using Diels–Alder “Click” as an Efficient Microwave Absorber. ACS Omega 2018, 3, 1137–1146. 10.1021/acsomega.7b01845. PubMed DOI PMC
Zahid M.; Nawab Y.; Gulzar N.; Rehan Z. A.; Shakir M. F.; Afzal A.; Abdul Rashid I.; Tariq A. Fabrication of Reduced Graphene Oxide (RGO) and Nanocomposite with Thermoplastic Polyurethane (TPU) for EMI Shielding Application. J. Mater. Sci.: Mater. Electron. 2020, 31, 967–974. 10.1007/s10854-019-02607-z. DOI
Liu T.; Pang Y.; Kikuchi H.; Kamada Y.; Takahashi S. Superparamagnetic property and high microwave absorption performance of FeAl@(Al, Fe)2O3 nanoparticles induced by surface oxidation. J. Mater. Chem. C 2015, 3, 6232–6239. 10.1039/C5TC00418G. DOI
Ramesh G. V.; Sudheendran K.; James Raju K. C.; Sreedhar B.; Radhakrishnan T. P. Microwave Absorber Based on Silver Nanoparticle-Embedded Polymer Thin Film. J. Nanosci. Nanotechnol. 2009, 9, 261–266. 10.1166/jnn.2009.J041. PubMed DOI
Kong I.Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems; Elsevier, 2016; Chapter 7, pp 125–154.
Kolev S.; Yanev A.; Nedkov I. Microwave absorption of ferrite powders in a polymer matrix. Phys. Status Solidi C 2006, 3, 1308–1315. 10.1002/pssc.200563116. DOI
Yan D.; Cheng S.; Zhuo R. F.; Chen J. T.; Feng J. J.; Feng H. T.; Li H. J.; Wu Z. G.; Wang J.; Yan P. X. Nanoparticles and 3D Sponge-like Porous Networks of Manganese Oxides and Their Microwave Absorption Properties. Nanotechnology 2009, 20, 10570610.1088/0957-4484/20/10/105706. PubMed DOI
Wang X.; Pakdel A.; Zhang J.; Weng Q.; Zhai T.; Zhi C.; Golberg D.; Bando Y. Large-Surface-Area BN Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Dielectric Properties. Nanoscale Res. Lett. 2012, 7, 66210.1186/1556-276X-7-662. PubMed DOI PMC
Ding L.; Zhao X.; Huang Y.; Yan J.; Li T.; Liu P. Ultra-broadband and covalently linked core–shell CoFe2O4@PPynanoparticles with reduced graphene oxide for microwave absorption. J. Colloid Interface Sci. 2021, 595, 168–177. 10.1016/j.jcis.2021.03.019. PubMed DOI
Zhang X.-J.; Wang G.-S.; Cao W.-Q.; Wei Y.-Z.; Liang J.-F.; Guo L.; Cao M.-S. Enhanced Microwave Absorption Property of Reduced Graphene Oxide (RGO)-MnFe2O4 Nanocomposites and Polyvinylidene Fluoride. ACS Appl. Mater. Interfaces 2014, 6, 7471–7478. 10.1021/am500862g. PubMed DOI
Yuan H.; Xu Y.; Jiaa H.; Zhou S. Superparamagnetic Fe3O4/MWCNTs heterostructures for high frequency microwave absorption. RSC Adv. 2016, 6, 67218–67225. 10.1039/C6RA11610H. DOI
He J.; Liu S.; Deng L.; Shan D.; Cao C.; Luo H.; Yan S. Tunable Electromagnetic and Enhanced Microwave Absorption Properties in CoFe2O4 Decorated Ti3C2 MXene Composites. Appl. Surf. Sci. 2020, 504, 14421010.1016/j.apsusc.2019.144210. DOI
Che R. C.; Zhi C. Y.; Liang C. Y.; Zhou X. G. Fabrication and Microwave Absorption of Carbon Nanotubes/CoFe2O4 Spinel Nanocomposite. Appl. Phys. Lett. 2006, 88, 03310510.1063/1.2165276. DOI
Houbi A.; Aldashevich Z. A.; Atassi Y.; Bagasharova Telmanovna Z.; Saule M.; Kubanych K. Microwave Absorbing Properties of Ferrites and Their Composites: A Review. J. Magn. Magn. Mater. 2021, 529, 16783910.1016/j.jmmm.2021.167839. DOI
Kadam R. H.; Borade R. B.; Mane M. L.; Mane D. R.; Batoo K. M.; Shirsath S. E. Structural, Mechanical, Dielectric Properties and Magnetic Interactions in Dy3+-Substituted Co–Cu–Zn Nanoferrites. RSC Adv. 2020, 10, 27911–27922. 10.1039/D0RA05274D. PubMed DOI PMC
Anu K.; Hemalatha J. Magnetic and Electrical Conductivity Studies of Zinc Doped Cobalt Ferrite Nanofluids. J. Mol. Liq. 2019, 284, 445–453. 10.1016/j.molliq.2019.04.018. DOI
Dippong T.; Levei E. A.; Deac I. G.; Neag E.; Cadar O. Influence of Cu2+, Ni2+, and Zn2+ Ions Doping on the Structure, Morphology, and Magnetic Properties of Co-Ferrite Embedded in SiO2 Matrix Obtained by an Innovative Sol-Gel Route. Nanomaterials 2020, 10, 58010.3390/nano10030580. PubMed DOI PMC
Barick A. K.; Tripathy D. K. Preparation, Characterization and Properties of Acid Functionalized Multi-Walled Carbon Nanotube Reinforced Thermoplastic Polyurethane Nanocomposites. Mater. Sci. Eng., B 2011, 176, 1435–1447. 10.1016/j.mseb.2011.08.001. DOI
Gao J.; Hu M.; Dong Y.; Li R. K. Y. Graphite-Nanoplatelet-Decorated Polymer Nanofiber with Improved Thermal, Electrical, and Mechanical Properties. ACS Appl. Mater. Interfaces 2013, 5, 7758–7764. 10.1021/am401420k. PubMed DOI
Quickel T. E.; Le V. H.; Brezesinski T.; Tolbert S. H. On the Correlation between Nanoscale Structure and Magnetic Properties in Ordered Mesoporous Cobalt Ferrite (CoFe2O4) Thin Films. Nano Lett. 2010, 10, 2982–2988. 10.1021/nl1014266. PubMed DOI
Ortiz-Quiñonez J.-L.; Pal U.; Villanueva M. S. Structural, Magnetic, and Catalytic Evaluation of Spinel Co, Ni, and Co–Ni Ferrite Nanoparticles Fabricated by Low-Temperature Solution Combustion Process. ACS Omega 2018, 3, 14986–15001. 10.1021/acsomega.8b02229. PubMed DOI PMC
Wang P.; Liu Z.-G.; Chen X.; Meng F.-L.; Liu J.-H.; Huang X.-J. UV Irradiation Synthesis of an Au–Graphene Nanocomposite with Enhanced Electrochemical Sensing Properties. J. Mater. Chem. A 2013, 1, 9189–9195. 10.1039/c3ta11155e. DOI
Yin F.; Wu S.; Wang Y.; Wu L.; Yuan P.; Wang X. Self-Assembly of Mildly Reduced Graphene Oxide Monolayer for Enhanced Raman Scattering. J. Solid State Chem. 2016, 237, 57–63. 10.1016/j.jssc.2016.01.015. DOI
Wu N.; She X.; Yang D.; Wu X.; Su F.; Chen Y. Synthesis of Network Reduced Graphene Oxide in Polystyrene Matrix by a Two-Step Reduction Method for Superior Conductivity of the Composite. J. Mater. Chem. 2012, 22, 17254–17261. 10.1039/c2jm33114d. DOI
Siong V. L. E.; Lee K. M.; Juan J. C.; Lai C. W.; Tai X. H.; Khe C. S. Removal of Methylene Blue Dye by Solvothermally Reduced Graphene Oxide: A Metal-Free Adsorption and Photodegradation Method. RSC Adv. 2019, 9, 37686–37695. 10.1039/C9RA05793E. PubMed DOI PMC
Liu H.; Dong M.; Huang W.; Gao J.; Dai K.; Guo J.; Zheng G.; Liu C.; Shen C.; Guo Z. Lightweight Conductive Graphene/Thermoplastic Polyurethane Foams with Ultrahigh Compressibility for Piezoresistive Sensing. J. Mater. Chem. C 2017, 5, 73–83. 10.1039/C6TC03713E. DOI
Jing X.; Mi H.-Y.; Salick M. R.; Cordie T. M.; Peng X.-F.; Turng L.-S. Electrospinning Thermoplastic Polyurethane/Graphene Oxide Scaffolds for Small Diameter Vascular Graft Applications. Mater. Sci. Eng., C 2015, 49, 40–50. 10.1016/j.msec.2014.12.060. PubMed DOI
Nikmanesh H.; Kameli P.; Asgarian S. M.; Karimi S.; Moradi M.; Kargar Z.; Ventura J.; Bordalo B.; Salamati H. Positron Annihilation Lifetime, Cation Distribution and Magnetic Features of Ni1–xZnxFe2–xCoxO4 Ferrite Nanoparticles. RSC Adv. 2017, 7, 22320–22328. 10.1039/C7RA01975K. DOI
Kumar P.; Pathak S.; Singh A.; Khanduri H.; Basheed G. A.; Wang L.; Pant R. P. Microwave Spin Resonance Investigation on the Effect of the Post-Processing Annealing of CoFe2O4 Nanoparticles. Nanoscale Adv. 2020, 2, 1939–1948. 10.1039/D0NA00156B. PubMed DOI PMC
Jangam K.; Patil K.; Balgude S.; Patange S.; More P. Magnetically Separable Zn1–xCo0.5xMg0.5xFe2O4 Ferrites: Stable and Efficient Sunlight-Driven Photocatalyst for Environmental Remediation. RSC Adv. 2020, 10, 42766–42776. 10.1039/D0RA08172H. PubMed DOI PMC
Tong W.; Zhang Y.; Yu L.; Luan X.; An Q.; Zhang Q.; Lv F.; Chu P. K.; Shen B.; Zhang Z. Novel Method for the Fabrication of Flexible Film with Oriented Arrays of Graphene in Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) with Low Dielectric Loss. J. Phys. Chem. C 2014, 118, 10567–10573. 10.1021/jp411828e. DOI
Zhang W.; Zhang Y.; Tian Y.; Yang Z.; Xiao Q.; Guo X.; Jing L.; Zhao Y.; Yan Y.; Feng J.; et al. Insight into the Capacitive Properties of Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 2014, 6, 2248–2254. 10.1021/am4057562. PubMed DOI
Rashti A.; Wang B.; Hassani E.; Feyzbar-Khalkhali-Nejad F.; Zhang X.; Oh T.-S. Electrophoretic Deposition of Nickel Cobaltite/Polyaniline/RGO Composite Electrode for High-Performance All-Solid-State Asymmetric Supercapacitors. Energy Fuels 2020, 34, 6448–6461. 10.1021/acs.energyfuels.0c00408. DOI
Xiang C.; Cox P. J.; Kukovecz A.; Genorio B.; Hashim D. P.; Yan Z.; Peng Z.; Hwang C.-C.; Ruan G.; Samuel E. L. G.; et al. Functionalized Low Defect Graphene Nanoribbons and Polyurethane Composite Film for Improved Gas Barrier and Mechanical Performances. ACS Nano 2013, 7, 10380–10386. 10.1021/nn404843n. PubMed DOI
Bera M.; Prabhakar A.; Maji P. K. Nanotailoring of Thermoplastic Polyurethane by Amine Functionalized Graphene Oxide: Effect of Different Amine Modifier on Final Properties. Composites, Part B 2020, 195, 10807510.1016/j.compositesb.2020.108075. DOI
Zhang T.; Yang J.; Zhang N.; Huang T.; Wang Y. Achieving Large Dielectric Property Improvement in Poly(Ethylene Vinyl Acetate)/Thermoplastic Polyurethane/Multiwall Carbon Nanotube Nanocomposites by Tailoring Phase Morphology. Ind. Eng. Chem. Res. 2017, 56, 3607–3617. 10.1021/acs.iecr.6b04763. DOI
Sharifi Dehsari H.; Asadi K. Impact of Stoichiometry and Size on the Magnetic Properties of Cobalt Ferrite Nanoparticles. J. Phys. Chem. C 2018, 122, 29106–29121. 10.1021/acs.jpcc.8b09276. DOI
Khan M. A. M.; Khan W.; Ahamed M.; Ahmed J.; Al-Gawati M. A.; Alhazaa A. N. Silver-Decorated Cobalt Ferrite Nanoparticles Anchored onto the Graphene Sheets as Electrode Materials for Electrochemical and Photocatalytic Applications. ACS Omega 2020, 5, 31076–31084. 10.1021/acsomega.0c04191. PubMed DOI PMC
Yadav R. S.; Havlica J.; Hnatko M.; Šajgalík P.; Alexander C.; Palou M.; Bartoníčková E.; Boháč M.; Frajkorová F.; Masilko J.; et al. Magnetic Properties of Co1–xZnxFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol–Gel Autocombustion Method and Its Ball Milling. J. Magn. Magn. Mater. 2015, 378, 190–199. 10.1016/j.jmmm.2014.11.027. DOI
Wang X.; Zhu T.; Chang S.; Lu Y.; Mi W.; Wang W. 3D Nest-Like Architecture of Core–Shell CoFe2O4@1T/2H-MoS2 Composites with Tunable Microwave Absorption Performance. ACS Appl. Mater. Interfaces 2020, 12, 11252–11264. 10.1021/acsami.9b23489. PubMed DOI
Guo P.; Cui L.; Wang Y.; Lv M.; Wang B.; Zhao X. S. Facile Synthesis of ZnFe2O4 Nanoparticles with Tunable Magnetic and Sensing Properties. Langmuir 2013, 29, 8997–9003. 10.1021/la401627x. PubMed DOI
Zhu J.; Wei S.; Haldolaarachchige N.; Young D. P.; Guo Z. Electromagnetic Field Shielding Polyurethane Nanocomposites Reinforced with Core–Shell Fe–Silica Nanoparticles. J. Phys. Chem. C 2011, 115, 15304–15310. 10.1021/jp2052536. DOI
Liu X. G.; Geng D. Y.; Ma S.; Meng H.; Tong M.; Kang D. J.; Zhang Z. D. Electromagnetic-Wave Absorption Properties of FeCo Nanocapsules and Coral-like Aggregates Self-Assembled by the Nanocapsules. J. Appl. Phys. 2008, 104, 06431910.1063/1.2982411. DOI
Almessiere M. A.; Slimani Y.; Güngüneş H.; Korkmaz A. D.; Zubar T.; Trukhanov S.; Trukhanov A.; Manikandan A.; Alahmari F.; Baykal A. Influence of Dy3+ Ions on the Microstructures and Magnetic, Electrical, and Microwave Properties of [Ni0.4Cu0.2Zn0.4](Fe2–XDyx)O4 (0.00 ≤ x ≤ 0.04) Spinel Ferrites. ACS Omega 2021, 6, 10266–10280. 10.1021/acsomega.1c00611. PubMed DOI PMC
Rondinone A. J.; Samia A. C. S.; Zhang Z. J. Characterizing the Magnetic Anisotropy Constant of Spinel Cobalt Ferrite Nanoparticles. Appl. Phys. Lett. 2000, 76, 3624–3626. 10.1063/1.126727. DOI
Manna R.; Ghosh K.; Srivastava S. K. Functionalized Graphene/Nickel/Polyaniline Ternary Nanocomposites: Fabrication and Application as Electromagnetic Wave Absorbers. Langmuir 2021, 37, 7430–7441. 10.1021/acs.langmuir.1c00804. PubMed DOI
Yin X.; Kong L.; Zhang L.; Cheng L.; Travitzky N.; Greil P. Electromagnetic Properties of Si–C–N Based Ceramics and Composites. Int. Mater. Rev. 2014, 59, 326–355. 10.1179/1743280414Y.0000000037. DOI
Cheng Y.; Zhao H.; Lv H.; Shi T.; Ji G.; Hou Y. Lightweight and Flexible Cotton Aerogel Composites for Electromagnetic Absorption and Shielding Applications. Adv. Electron. Mater. 2020, 6, 190079610.1002/aelm.201900796. DOI
Verma M.; Chauhan S. S.; Dhawan S. K.; Choudhary V. Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations. Composites, Part B 2017, 120, 118–127. 10.1016/j.compositesb.2017.03.068. DOI
Shahzad F.; Yu S.; Kumar P.; Lee J.-W.; Kim Y.-H.; Hong S. M.; Koo C. M. Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos. Struct. 2015, 133, 1267–1275. 10.1016/j.compstruct.2015.07.036. DOI
Manna K.; Srivastava S. K. Contrasting Role of Defect-Induced Carbon Nanotubes in Electromagnetic Interference Shielding. J. Phys. Chem. C 2018, 122, 19913–19920. 10.1021/acs.jpcc.8b04813. DOI
Shin B.; Mondal S.; Lee M.; Kim S.; Huh Y.-I.; Nah C. Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem. Eng. J. 2021, 418, 12928210.1016/j.cej.2021.129282. DOI
Li L.; Cao Y.; Liu X.; Wang J.; Yang Y.; Wang W. Multifunctional MXene-Based Fireproof Electromagnetic Shielding Films with Exceptional Anisotropic Heat Dissipation Capability and Joule Heating Performance. ACS Appl. Mater. Interfaces 2020, 12, 27350–27360. 10.1021/acsami.0c05692. PubMed DOI
Liu C.; Wang X.; Huang X.; Liao X.; Shi B. Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 14036–14044. 10.1021/acsami.8b01562. PubMed DOI
Pawar S. P.; Gandi M.; Bose S. High Performance Electromagnetic Wave Absorbers Derived from PC/SAN Blends Containing Multiwall Carbon Nanotubes and Fe3O4 Decorated onto Graphene Oxide Sheets. RSC Adv. 2016, 6, 37633–37645. 10.1039/C5RA25435C. DOI
Srivastava R. K.; Xavier P.; Gupta S. N.; Kar G. P.; Bose S.; Sood A. K. Excellent Electromagnetic Interference Shielding by Graphene- MnFe2O4-Multiwalled Carbon Nanotube Hybrids at Very Low Weight Percentage in Polymer Matrix. ChemistrySelect 2016, 1, 5995–6003. 10.1002/slct.201601302. DOI
Nath K.; Ghosh S.; Ghosh S. K.; Das P.; Das N. C. Facile Preparation of Light-Weight Biodegradable and Electrically Conductive Polymer Based Nanocomposites for Superior Electromagnetic Interference Shielding Effectiveness. J. Appl. Polym. Sci. 2021, 138, 5051410.1002/app.50514. DOI
Gulzar N.; Zubair K.; Shakir M. F.; Zahid M.; Nawab Y.; Rehan Z. A. Effect on the EMI Shielding Properties of Cobalt Ferrites and Coal-Fly-Ash Based Polymer Nanocomposites. J. Supercond. Novel Magn. 2020, 33, 3519–3524. 10.1007/s10948-020-05608-w. DOI
Dar M. A.; Majid K.; Najar M. H.; Kotnala R. K.; Shah J.; Dhawan S. K.; Farukh M. Surfactant-Assisted Synthesis of Polythiophene/Ni0.5Zn0.5Fe2–xCexO4 Ferrite Composites: Study of Structural, Dielectric and Magnetic Properties for EMI-Shielding Applications. Phys. Chem. Chem. Phys. 2017, 19, 10629–10643. 10.1039/C7CP00414A. PubMed DOI
Yan D.-X.; Pang H.; Li B.; Vajtai R.; Xu L.; Ren P.-G.; Wang J.-H.; Li Z.-M. Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2015, 25, 559–566. 10.1002/adfm.201403809. DOI
Sambyal P.; Dhawan S. K.; Gairola P.; Chauhan S. S.; Gairola S. P. Synergistic Effect of Polypyrrole/BST/rGO/Fe3O4 Composite for Enhanced Microwave Absorption and EMI Shielding in X-Band. Curr. Appl. Phys. 2018, 18, 611–618. 10.1016/j.cap.2018.03.001. DOI
Xu H.; Yin X.; Li X.; Li M.; Liang S.; Zhang L.; Cheng L. Lightweight Ti2CTx MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. ACS Appl. Mater. Interfaces 2019, 11, 10198–10207. 10.1021/acsami.8b21671. PubMed DOI
Saini P.; Choudhary V.; Vijayan N.; Kotnala R. K. Improved Electromagnetic Interference Shielding Response of Poly(aniline)-Coated Fabrics Containing Dielectric and Magnetic Nanoparticles. J. Phys. Chem. C 2012, 116, 13403–13412. 10.1021/jp302131w. DOI
Liu H.; Liang C.; Chen J.; Huang Y.; Cheng F.; Wen F.; Xu B.; Wang B. Novel 3D network porous graphene nanoplatelets /Fe3O4/epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 2019, 169, 103–109104. 10.1016/j.compscitech.2018.11.005. DOI
Zhang H.-B.; Yan Q.; Zheng W.-G.; He Z.; Yu Z.-Z. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. 10.1021/am200021v. PubMed DOI
Shen B.; Zhai W.; Tao M.; Ling J.; Zheng W. Lightweight, Multifunctional Polyetherimide/Graphene@Fe3O4 Composite Foams for Shielding of Electromagnetic Pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391. 10.1021/am4036527. PubMed DOI
Zhang H.; Zhang G.; Li J.; Fan X.; Jing Z.; Li J.; Shi X. Lightweight, multifunctional microcellular PMMA/Fe3O4@MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Composites, Part A 2017, 100, 128–138. 10.1016/j.compositesa.2017.05.009. DOI
Ling J.; Zhai W.; Feng W.; Shen B.; Zhang J.; Zheng W. Facile Preparation of Lightweight Microcellular Polyetherimide/ Graphene Composite Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684. 10.1021/am303289m. PubMed DOI
Pawar S. P.; Biswas S.; Kar G. P.; Bose S. High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer 2016, 84, 398–419. 10.1016/j.polymer.2016.01.010. DOI
Chen D.; Wang G.-S.; He S.; Liu J.; Guo L.; Cao M.-S. Controllable Fabrication of Mono-Dispersed rGO–Hematite Nanocomposites and Their Enhanced Wave Absorption Properties. J. Mater. Chem. A 2013, 1, 5996–6003. 10.1039/c3ta10664k. DOI
Yan J.; Huang Y.; Chen X.; Wei C. Conducting Polymers-NiFe2O4 Coated on Reduced Graphene Oxide Sheets as Electromagnetic (EM) Wave Absorption Materials. Synth. Met. 2016, 221, 291–298. 10.1016/j.synthmet.2016.09.018. DOI
Liu H.; Li Y.; Dai K.; Zheng G.; Liu C.; Shen C.; Yan X.; Guo J.; Guo Z. Electrically Conductive Thermoplastic Elastomer Nanocomposites at Ultralow Graphene Loading Levels for Strain Sensor Applications. J. Mater. Chem. C 2016, 4, 157–166. 10.1039/C5TC02751A. DOI
Shakir M. F.; Tariq A.; Rehan Z. A.; Nawab Y.; Abdul Rashid I.; Afzal A.; Hamid U.; Raza F.; Zubair K.; Rizwan M. S.; Riaz S.; Sultan A.; Muttaqi M. Effect of Nickel-Spinal-Ferrites on EMI Shielding Properties of Polystyrene/Polyaniline Blend. SN Appl. Sci. 2020, 2, 70610.1007/s42452-020-2535-4. DOI
Quan B.; Liang X.; Ji G.; Cheng Y.; Liu W.; Ma J.; Zhang Y.; Li D.; Xu G. Dielectric Polarization in Electromagnetic Wave Absorption: Review and Perspective. J. Alloys Compd. 2017, 728, 1065–1075. 10.1016/j.jallcom.2017.09.082. DOI
Chen Y.-J.; Zhang F.; Zhao G.-g.; Fang X.-y.; Jin H.-B.; Gao P.; Zhu C.-L.; Cao M.-S.; Xiao G. Synthesis, Multi-Nonlinear Dielectric Resonance, and Excellent Electromagnetic Absorption Characteristics of Fe3O4/ZnO Core/Shell Nanorods. J. Phys. Chem. C 2010, 114, 9239–9244. 10.1021/jp912178q. DOI
Movassagh-Alanagh F.; Bordbar-Khiabani A.; Ahangari-Asl A. Three-Phase PANI@nano-Fe3O4@CFs Heterostructure: Fabrication, Characterization and Investigation of Microwave Absorption and EMI Shielding of PANI@nano-Fe3O4@CFs/Epoxy Hybrid Composite. Compos. Sci. Technol. 2017, 150, 65–78. 10.1016/j.compscitech.2017.07.010. DOI
Xie A.; Jiang W.; Wu F.; Dai X.; Sun M.; Wang Y.; Wang M. Interfacial Synthesis of Polypyrrole Microparticles for Effective Dissipation of Electromagnetic Waves. J. Appl. Phys. 2015, 118, 20410510.1063/1.4936549. DOI
Zhang Z.; Wang G.; Gu W.; Zhao Y.; Tang S.; Ji G. A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. J. Colloid Interface Sci. 2022, 605, 193–203. 10.1016/j.jcis.2021.07.085. PubMed DOI
Zhang X.; Qiao J.; Zhao J.; Xu D.; Wang F.; Liu C.; Jiang Y.; Wu L.; Cui P.; Lv L.; Wang Q.; Liu W.; Wang Z.; Liu J. High-Efficiency Electromagnetic Wave Absorption of Cobalt- Decorated NH2-UIO-66-Derived Porous ZrO2/C. ACS Appl. Mater. Interfaces 2019, 11, 35959–35968. 10.1021/acsami.9b10168. PubMed DOI
Wang L.; Jia X.; Li Y.; Yang F.; Zhang L.; Liu L.; Ren X.; Yang H. Synthesis and Microwave Absorption Property of Flexible Magnetic Film Based on Graphene Oxide/Carbon Nanotubes and Fe3O4 Nanoparticles. J. Mater. Chem. A 2014, 2, 14940–14946. 10.1039/C4TA02815E. DOI
Guan G.; Gao G.; Xiang J.; Yang J.; Gong L.; Chen X.; Zhang Y.; Zhang K.; Meng X. CoFe2/BaTiO3 Hybrid Nanofibers for Microwave Absorption. ACS Appl. Nano Mater. 2020, 3, 8424–8437. 10.1021/acsanm.0c01855. DOI
Yin Y.; Zeng M.; Liu J.; Tang W.; Dong H.; Xia R.; Yu R. Enhanced High-Frequency Absorption of Anisotropic Fe3O4 /Graphene Nanocomposites. Sci. Rep. 2016, 6, 2507510.1038/srep25075. PubMed DOI PMC
Ibrahim I. R.; Matori K. A.; Ismail I.; Awang Z.; Rusly S. N. A.; Nazlan R.; Mohd Idris F.; Muhammad Zulkimi M. M.; Abdullah N. H.; Mustaffa M. S.; et al. A Study on Microwave Absorption Properties of Carbon Black and Ni0.6Zn0.4Fe2O4 Nanocomposites by Tuning the Matching-Absorbing Layer Structures. Sci. Rep. 2020, 10, 313510.1038/s41598-020-60107-1. PubMed DOI PMC
Li X.; Shu R.; Wu Y.; Zhang J.; Wan Z. Fabrication of Nitrogen-Doped Reduced Graphene Oxide/Cobalt Ferrite Hybrid Nanocomposites as Broadband Electromagnetic Wave Absorbers in Both X and Ku Bands. Synth. Met. 2021, 271, 11662110.1016/j.synthmet.2020.116621. DOI
Zong M.; Huang Y.; Zhang N.; Wu H. Influence of (rGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites. J. Alloys Compd. 2015, 644, 491–501. 10.1016/j.jallcom.2015.05.073. DOI
Xiong L.; Yu M.; Liu J.; Li S.; Xue B. Preparation and evaluation of the microwave absorption properties of template-free graphene foam-supported Ni nanoparticles. RSC Adv. 2017, 7, 14733–14741. 10.1039/C6RA27435H. DOI
Liu X.; Cui X.; Chen Y.; Zhang X.-J.; Yu R.; Wang G.-S.; Ma H. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidenefluoride) composites. Carbon 2015, 95, 870–878. 10.1016/j.carbon.2015.09.036. DOI
Kim S.; Oh J.-S.; Kim M.-G.; Jang W.; Wang M.; Kim Y.; Seo H. W.; Kim Y. C.; Lee J.-H.; Lee Y.; et al. Electromagnetic Interference (EMI) Transparent Shielding of Reduced Graphene Oxide (rGO) Interleaved Structure Fabricated by Electrophoretic Deposition. ACS Appl. Mater. Interfaces 2014, 6, 17647–17653. 10.1021/am503893v. PubMed DOI
Liu P.; Gao S.; Zhang G.; Huang Y.; You W.; Che R. Hollow Engineering to Co@N-Doped Carbon Nanocages via Synergistic Protecting-Etching Strategy for Ultrahigh Microwave Absorption. Adv. Funct. Mater. 2021, 31, 210281210.1002/adfm.202170295. DOI
Lou Z.; Han H.; Zhou M.; Han J.; Cai J.; Huang C.; Zou J.; Zhou X.; Zhou H.; Sun Z. Synthesis of Magnetic Wood with Excellent and Tunable Electromagnetic Wave-Absorbing Properties by a Facile Vacuum/Pressure Impregnation Method. ACS Sustainable Chem. Eng. 2018, 6, 1000–1008. 10.1021/acssuschemeng.7b03332. DOI
Liu Y.; Chen Z.; Zhang Y.; Feng R.; Chen X.; Xiong C.; Dong L. Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFe2O4/Reduced Graphene Oxide Porous Nanocomposites. ACS Appl. Mater. Interfaces 2018, 10, 13860–13868. 10.1021/acsami.8b02137. PubMed DOI
Wu Y.; Pan W.; Li Y.; Yang B.; Meng B.; Li R.; Yu R. Surface-Oxidized Amorphous Fe Nanoparticles Supported on Reduced Graphene Oxide Sheets for Microwave Absorption. ACS Appl. Nano Mater. 2019, 2, 4367–4376. 10.1021/acsanm.9b00809. DOI
Gao S.; Zhang G.; Wang Y.; Han X.; Huang Y.; Liu P. MOFs derived magnetic porous carbon microspheres constructed bycore-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 88, 56–65. 10.1016/j.jmst.2021.02.011. DOI
Zhu X.; Qiu H.; Chen P.; Chen G.; Min W. Anemone-Shaped ZIF-67@CNTs as Effective Electromagnetic Absorbent Covered the Whole X-Band. Carbon 2021, 173, 1–10. 10.1016/j.carbon.2020.10.055. DOI
Manna K.; Srivastava S. K. Fe3O4@Carbon@Polyaniline Trilaminar Core–Shell Composites as Superior Microwave Absorber in Shielding of Electromagnetic Pollution. ACS Sustainable Chem. Eng. 2017, 5, 10710–10721. 10.1021/acssuschemeng.7b02682. DOI
Liu J.; Che R.; Chen H.; Zhang F.; Xia F.; Wu Q.; Wang M. Microwave Absorption Enhancement of Multifunctional Composite Microspheres with Spinel Fe3O4 Cores and Anatase TiO2 Shells. Small 2012, 8, 1214–1221. 10.1002/smll.201102245. PubMed DOI
Zhang Y.; Wang X.; Cao M. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436. 10.1007/s12274-017-1758-1. DOI
Liu X.; Zhao X.; Yan J.; Huang Y.; Li T.; Liu P. Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly(3,4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite. Carbon 2021, 178, 273–284. 10.1016/j.carbon.2021.03.042. DOI
Qiao M.; Lei X.; Ma Y.; Tian L.; He X.; Su K.; Zhang Q. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519. 10.1007/s12274-017-1767-0. DOI
Abrisham M.; Sarmad M. P.; Sadeghi G. M. M.; Arjmand M.; Dehghan P.; Amirkiai A. Microstructural design for enhanced mechanical property and shape memory behavior of polyurethane nanocomposites: Role of carbon nanotube, montmorillonite, and their hybrid fillers. Polym. Test. 2020, 89, 10664210.1016/j.polymertesting.2020.106642. DOI
Bera M.; Prabhakar A.; Maji P. K. Nanotailoring of thermoplastic polyurethane by amine functionalized graphene oxide: Effect of different amine modifier on final properties. Composites, Part B 2020, 195, 10807510.1016/j.compositesb.2020.108075. DOI
Eichner E.; Heinrich S.; Schneider G. A. Influence of particle shape and size on mechanical properties in copper-polymer composites. Powder Technol. 2018, 339, 39–45. 10.1016/j.powtec.2018.07.100. DOI
Menon A. V.; Madras G.; Bose S. Mussel-Inspired Self-Healing Polyurethane with “Flower-like” Magnetic MoS2 as Efficient Microwave Absorbers. ACS Appl. Polym. Mater. 2019, 1, 2417–2429. 10.1021/acsapm.9b00538. DOI
Marcano D. C.; Kosynkin D. V.; Berlin J. M.; Sinitskii A.; Sun Z.; Slesarev A.; Alemany L. B.; Lu W.; Tour J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. 10.1021/nn1006368. PubMed DOI
Yadav R. S.; Kuřitka I.; Vilcakova J.; Machovsky M.; Skoda D.; Urbánek P.; Masař M.; Jurča M.; Urbánek M.; Kalina L.; et al. NiFe2O4 Nanoparticles Synthesized by Dextrin from Corn-Mediated Sol–Gel Combustion Method and Its Polypropylene Nanocomposites Engineered with Reduced Graphene Oxide for the Reduction of Electromagnetic Pollution. ACS Omega 2019, 4, 22069–22081. 10.1021/acsomega.9b03191. PubMed DOI PMC