CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding

. 2022 Feb 26 ; 23 (5) : . [epub] 20220226

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35269754

Grantová podpora
GA19-23647S Czech Science Foundation
DKRVO (RP/CPS/2020/006) Ministry of Education, Youth, and Sports of the Czech Republic

CuxCo1-xFe2O4 (x = 0.33, 0.67, 1)-reduced graphene oxide (rGO)-thermoplastic polyurethane (TPU) nanocomposites exhibiting highly efficient electromagnetic interference (EMI) shielding were prepared by a melt-mixing approach using a microcompounder. Spinel ferrite Cu0.33Co0.67Fe2O4 (CuCoF1), Cu0.67Co0.33Fe2O4 (CuCoF2) and CuFe2O4 (CuF3) nanoparticles were synthesized using the sonochemical method. The CuCoF1 and CuCoF2 exhibited typical ferromagnetic features, whereas CuF3 displayed superparamagnetic characteristics. The maximum value of EMI total shielding effectiveness (SET) was noticed to be 42.9 dB, 46.2 dB, and 58.8 dB for CuCoF1-rGO-TPU, CuCoF2-rGO-TPU, and CuF3-rGO-TPU nanocomposites, respectively, at a thickness of 1 mm. The highly efficient EMI shielding performance was attributed to the good impedance matching, conductive, dielectric, and magnetic loss. The demonstrated nanocomposites are promising candidates for a lightweight, flexible, and highly efficient EMI shielding material.

Zobrazit více v PubMed

Yadav R.S., Kuřitka I., Vilčáková J. Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications. Elsevier; Cambridge, MA, USA: 2020.

Bhawal P., Ganguly S., Das T.K., Mondal S., Choudhury S., Das N.C. Superior Electromagnetic Interference Shielding Effectiveness and Electro-Mechanical Properties of EMA-IRGO Nanocomposites through the in-Situ Reduction of GO from Melt Blended EMA-GO Composites. Compos. Part B Eng. 2018;134:46–60. doi: 10.1016/j.compositesb.2017.09.046. DOI

Kumaran R., kumar S.D., Balasubramanian N., Alagar M., Subramanian V., Dinakaran K. Enhanced Electromagnetic Interference Shielding in a Au–MWCNT Composite Nanostructure Dispersed PVDF Thin Films. J. Phys. Chem. C. 2016;120:13771–13778. doi: 10.1021/acs.jpcc.6b01333. DOI

Ravindren R., Mondal S., Nath K., Das N.C. Prediction of Electrical Conductivity, Double Percolation Limit and Electromagnetic Interference Shielding Effectiveness of Copper Nanowire Filled Flexible Polymer Blend Nanocomposites. Compos. Part B Eng. 2019;164:559–569. doi: 10.1016/j.compositesb.2019.01.066. DOI

Duan H., He P., Zhu H., Yang Y., Zhao G., Liu Y. Constructing 3D Carbon-Metal Hybrid Conductive Network in Polymer for Ultra-Efficient Electromagnetic Interference Shielding. Compos. Part B Eng. 2021;212:108690. doi: 10.1016/j.compositesb.2021.108690. DOI

Paun C., Obreja C., Comanescu F., Tucureanu V., Tutunaru O., Romanitan C., Ionescu O., Gavrila D.E., Paltanea V.M., Stoica V., et al. Studies on Structural MWCNT/Epoxy Nanocomposites for EMI Shielding Applications. IOP Conf. Ser. Mater. Sci. Eng. 2021;1009:012046. doi: 10.1088/1757-899X/1009/1/012046. DOI

Rani P., Ahamed B., Deshmukh K. Dielectric and Electromagnetic Interference Shielding Properties of Zeolite 13X and Carbon Black Nanoparticles Based PVDF Nanocomposites. J. Appl. Polym. Sci. 2021;138:50107. doi: 10.1002/app.50107. DOI

Gulzar N., Zubair K., Shakir M.F., Zahid M., Nawab Y., Rehan Z.A. Effect on the EMI Shielding Properties of Cobalt Ferrites and Coal-Fly-Ash Based Polymer Nanocomposites. J. Supercond. Nov. Magn. 2020;33:3519–3524. doi: 10.1007/s10948-020-05608-w. DOI

Valentini M., Piana F., Pionteck J., Lamastra F.R., Nanni F. Electromagnetic Properties and Performance of Exfoliated Graphite (EG)—Thermoplastic Polyurethane (TPU) Nanocomposites at Microwaves. Compos. Sci. Technol. 2015;114:26–33. doi: 10.1016/j.compscitech.2015.03.006. DOI

Zahid M., Nawab Y., Gulzar N., Rehan Z.A., Shakir M.F., Afzal A., Abdul Rashid I., Tariq A. Fabrication of reduced graphene oxide (RGO) and nanocomposite with thermoplastic polyurethane (TPU) for EMI shielding application. J. Mater. Sci. Mater. Electron. 2020;31:967–974. doi: 10.1007/s10854-019-02607-z. DOI

Sobha A.P., Sreekala P.S., Narayanankutty S.K. Electrical, Thermal, Mechanical and Electromagnetic Interference Shielding Properties of PANI/FMWCNT/TPU Composites. Prog. Org. Coat. 2017;113:168–174. doi: 10.1016/j.porgcoat.2017.09.001. DOI

Yadav R.S., Anju, Jamatia T., Kuřitka I., Vilčáková J., Škoda D., Urbánek P., Machovský M., Masař M., Urbánek M., et al. Excellent, Lightweight and Flexible Electromagnetic Interference Shielding Nanocomposites Based on Polypropylene with MnFe2O4 Spinel Ferrite Nanoparticles and Reduced Graphene Oxide. Nanomaterials. 2020;10:2481. doi: 10.3390/nano10122481. PubMed DOI PMC

Kumar A., Singh A.K., Tomar M., Gupta V., Kumar P., Singh K. Electromagnetic Interference Shielding Performance of Lightweight NiFe2O4/RGO Nanocomposite in X- Band Frequency Range. Ceram. Int. 2020;46:15473–15481. doi: 10.1016/j.ceramint.2020.03.092. DOI

Dey C.C., Mahapatra A.S., Sadhukhan S., Chakrabarti P.K. Electromagnetic Shielding Performance of Co0.5Zn0.4Cu0.1Fe2O4-GO/Paraffin Wax Hybrid Nanocomposite through Magnetic Energy Morphing Prepared by Facile Synthesis Method. Mater. Today Commun. 2021;27:102190. doi: 10.1016/j.mtcomm.2021.102190. DOI

Ismail M.M., Rafeeq S.N., Sulaiman J.M.A., Mandal A. Electromagnetic Interference Shielding and Microwave Absorption Properties of Cobalt Ferrite CoFe2O4/Polyaniline Composite. Appl. Phys. A. 2018;124:380. doi: 10.1007/s00339-018-1808-x. DOI

Chitra P., Kumar E.R., Pushpagiri T., Steephen A. Size and Phase Purity–Dependent Microstructural and Magnetic Properties of Spinel Ferrite Nanoparticles. J. Supercond. Nov. Magn. 2021;34:1239–1244. doi: 10.1007/s10948-021-05831-z. DOI

Thanh N.K., Loan T.T., Anh L.N., Duong N.P., Soontaranon S., Thammajak N., Hien T.D. Cation Distribution in CuFe2O4 Nanoparticles: Effects of Ni Doping on Magnetic Properties. J. Appl. Phys. 2016;120:142115. doi: 10.1063/1.4961722. DOI

Zhu G., Xu H., Xiao Y., Liu Y., Yuan A., Shen X. Facile Fabrication and Enhanced Sensing Properties of Hierarchically Porous CuO Architectures. ACS Appl. Mater. Interfaces. 2012;4:744–751. doi: 10.1021/am2013882. PubMed DOI

Amulya M.A.S., Nagaswarupa H.P., Kumar M.R.A., Ravikumar C.R., Kusuma K.B., Prashantha S.C. Evaluation of bifunctional applications of CuFe2O4 nanoparticles synthesized by a sonochemical method. J. Phys. Chem. Solids. 2021;148:109756. doi: 10.1016/j.jpcs.2020.109756. DOI

Gao S., Chen X., Pan F., Song K., Zhao C., Liu L., Liu X., Zhao D. Efect of secondary phase on the electromagnetic shielding efectiveness of magnesium alloy. Sci. Rep. 2018;8:1625. doi: 10.1038/s41598-018-19933-7. PubMed DOI PMC

Song L., Duan Y., Cui Y., Huang Z. Fe-Doped MnO2 Nanostructures for Attenuation−Impedance Balance-Boosted Microwave Absorption. ACS Appl. Nano Mater. 2022;5:2738. doi: 10.1021/acsanm.1c04410. DOI

Tedjieukeng H.M.K., Tsobnang P.K., Fomekong R.L., Etape E.P., Joy P.A., Delcorte A., Lambi J.N. Structural Characterization and Magnetic Properties of Undoped and Copper-Doped Cobalt Ferrite Nanoparticles Prepared by the Octanoate Coprecipitation Route at Very Low Dopant Concentrations. RSC Adv. 2018;8:38621–38630. doi: 10.1039/C8RA08532C. PubMed DOI PMC

Anugraha A., Lakshmi V.K., Kumar G.S., Raguram T., Rajni K.S. Synthesis and Characterisation of Copper Substituted Cobalt Ferrite Nanoparticles by Sol-Gel Auto Combustion Route. IOP Conf. Ser. Mater. Sci. Eng. 2019;577:012059. doi: 10.1088/1757-899X/577/1/012059. DOI

Jnaneshwara D.M., Avadhani D.N., Daruka Prasad B., Nagabhushana H., Nagabhushana B.M., Sharma S.C., Prashantha S.C., Shivakumara C. Role of Cu2+ Ions Substitution in Magnetic and Conductivity Behavior of Nano-CoFe2O4. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;132:256–262. doi: 10.1016/j.saa.2014.04.179. PubMed DOI

Mahalakshmi S., Jayasri R., Nithiyanatham S., Swetha S., Santhi K. Magnetic Interactions and Dielectric Behaviour of Cobalt Ferrite and Barium Titanate Multiferroics Nanocomposites. Appl. Surf. Sci. 2019;494:51–56. doi: 10.1016/j.apsusc.2019.07.096. DOI

Chen Y., Pötschke P., Pionteck J., Voit B., Qi H. Multifunctional Cellulose/RGO/Fe3O4 Composite Aerogels for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2020;12:22088–22098. doi: 10.1021/acsami.9b23052. PubMed DOI

Jing X., Mi H.-Y., Huang H.-X., Turng L.-S. Shape Memory Thermoplastic Polyurethane (TPU)/Poly(ε-Caprolactone) (PCL) Blends as Self-Knotting Sutures. J. Mech. Behav. Biomed. Mater. 2016;64:94–103. doi: 10.1016/j.jmbbm.2016.07.023. PubMed DOI

Beniwal A. Sunny Novel TPU/Fe2O3 and TPU/Fe2O3/PPy Nanocomposites Synthesized Using Electrospun Nanofibers Investigated for Analyte Sensing Applications at Room Temperature. Sens. Actuators B Chem. 2020;304:127384. doi: 10.1016/j.snb.2019.127384. DOI

Kumar S., Gupta T.K., Varadarajan K.M. Strong, Stretchable and Ultrasensitive MWCNT/TPU Nanocomposites for Piezoresistive Strain Sensing. Compos. Part B Eng. 2019;177:107285. doi: 10.1016/j.compositesb.2019.107285. DOI

Anju, Yadav R.S., Pötschke P., Pionteck J., Krause B., Kuřitka I., Vilcakova J., Skoda D., Urbánek P., Machovsky M., et al. High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+-Substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution. ACS Omega. 2021;6:28098–28118. doi: 10.1021/acsomega.1c04192. PubMed DOI PMC

Barick A.K., Tripathy D.K. Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites. Mater. Sci. Eng. B. 2011;176:1435–1447. doi: 10.1016/j.mseb.2011.08.001. DOI

Chandramohan P., Srinivasan M.P., Velmurugan S., Narasimhan S.V. Cation distribution and particle size effect on Raman spectrum of CoFe2O4. J. Solid State Chem. 2011;184:89–96. doi: 10.1016/j.jssc.2010.10.019. DOI

Nandan B., Bhatnagar M.C., Kashyap S.C. Cation Distribution in Nanocrystalline Cobalt Substituted Nickel Ferrites: X-ray Diffraction and Raman Spectroscopic Investigations. J. Phys. Chem. Solids. 2019;129:298–306. doi: 10.1016/j.jpcs.2019.01.017. DOI

Sumalatha M., Shravan kumar Reddy S., Reddy M.S., Sripada S., Raja M.M., Reddy C.G., Reddy P.Y., Reddy V.R. Raman and In-Field 57Fe Mössbauer Study of Cation Distribution in Ga Substituted Cobalt Ferrite (CoFe2-xGaxO4) J. Alloy. Compd. 2020;837:155478. doi: 10.1016/j.jallcom.2020.155478. DOI

Hidayah N.M.S., Liu W.-W., Lai C.-W., Noriman N.Z., Khe C.-S., Hashim U., Lee H.C. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. AIP Conf. Proc. 2017;1892:150002. doi: 10.1063/1.5005764. DOI

Sadhukhan S., Ghosh T.K., Roy I., Rana D., Bhattacharyya A., Saha R., Chattopadhyay S., Khatua S., Acharya K., Chattopadhyay D. Green Synthesis of Cadmium Oxide Decorated Reduced Graphene Oxide Nanocomposites and Its Electrical and Antibacterial Properties. Mater. Sci. Eng. C. 2019;99:696–709. doi: 10.1016/j.msec.2019.01.128. PubMed DOI

Konios D., Stylianakis M.M., Stratakis E., Kymakis E. Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. J. Colloid Interface Sci. 2014;430:108–112. doi: 10.1016/j.jcis.2014.05.033. PubMed DOI

Gnanaseelan M., Samanta S., Pionteck J., Jehnichen D., Simon F., Pötschke P., Voit B. Vanadium salt assisted solvothermal reduction of graphene oxide and the thermoelectric characterisation of the reduced graphene oxide in bulk and as composite. Mater. Chem. Phys. 2019;229:319–329. doi: 10.1016/j.matchemphys.2019.03.002. DOI

Aradhana R., Mohanty S., Nayak S.K. Comparison of Mechanical, Electrical and Thermal Properties in Graphene Oxide and Reduced Graphene Oxide Filled Epoxy Nanocomposite Adhesives. Polymer. 2018;141:109–123. doi: 10.1016/j.polymer.2018.03.005. DOI

Muzyka R., Drewniak S., Pustelny T., Chrubasik M., Gryglewicz G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy. Materials. 2018;11:1050. doi: 10.3390/ma11071050. PubMed DOI PMC

Khan Q.A., Shaur A., Khan T.A., Joya Y.F., Awan M.S. Characterization of Reduced Graphene Oxide Produced through a Modified Hoffman Method. Cogent Chem. 2017;3:1298980. doi: 10.1080/23312009.2017.1298980. DOI

de León A.S., Domínguez-Calvo A., Molina S.I. Materials with Enhanced Adhesive Properties Based on Acrylonitrile-Butadiene-Styrene (ABS)/Thermoplastic Polyurethane (TPU) Blends for Fused Filament Fabrication (FFF) Mater. Des. 2019;182:108044. doi: 10.1016/j.matdes.2019.108044. DOI

Galindo B., Alcolea S.G., Gómez J., Navas A., Murguialday A.O., Fernandez M.P., Puelles R.C. Effect of the Number of Layers of Graphene on the Electrical Properties of TPU Polymers. IOP Conf. Ser. Mater. Sci. Eng. 2014;64:012008. doi: 10.1088/1757-899X/64/1/012008. DOI

Ati A.A., Othaman Z., Samavati A. Influence of Cobalt on Structural and Magnetic Properties of Nickel Ferrite Nanoparticles. J. Mol. Struct. 2013;1052:177–182. doi: 10.1016/j.molstruc.2013.08.040. DOI

Samoila P., Cojocaru C., Cretescu I., Stan C.D., Nica V., Sacarescu L., Harabagiu V. Nanosized Spinel Ferrites Synthesized by Sol-Gel Autocombustion for Optimized Removal of Azo Dye from Aqueous Solution. J. Nanomater. 2015;2015:e713802. doi: 10.1155/2015/713802. DOI

Karimi Z., Mohammadifar Y., Shokrollahi H., Asl S.K., Yousefi G., Karimi L. Magnetic and Structural Properties of Nano Sized Dy-Doped Cobalt Ferrite Synthesized by Co-Precipitation. J. Magn. Magn. Mater. 2014;361:150–156. doi: 10.1016/j.jmmm.2014.01.016. DOI

Patange S.M., Shirsath S.E., Toksha B.G., Jadhav S.S., Shukla S.J., Jadhav K.M. Cation Distribution by Rietveld, Spectral and Magnetic Studies of Chromium-Substituted Nickel Ferrites. Appl. Phys. A. 2009;95:429–434. doi: 10.1007/s00339-008-4897-0. DOI

Avazpour L., Zandi khajeh M.A., Toroghinejad M.R., Shokrollahi H. Synthesis of Single-Phase Cobalt Ferrite Nanoparticles via a Novel EDTA/EG Precursor-Based Route and Their Magnetic Properties. J. Alloy. Compd. 2015;637:497–503. doi: 10.1016/j.jallcom.2015.03.041. DOI

Sharma N., Sharma V., Jain Y., Kumari M., Gupta R., Sharma S.K., Sachdev K. Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO) for Gas Sensing Application. Macromol. Symp. 2017;376:1700006. doi: 10.1002/masy.201700006. DOI

Zhang C., Dabbs D.M., Liu L.-M., Aksay I.A., Car R., Selloni A. Combined Effects of Functional Groups, Lattice Defects, and Edges in the Infrared Spectra of Graphene Oxide. J. Phys. Chem. C. 2015;119:18167–18176. doi: 10.1021/acs.jpcc.5b02727. DOI

Al-Gaashani R., Najjar A., Zakaria Y., Mansour S., Atieh M.A. XPS and Structural Studies of High Quality Graphene Oxide and Reduced Graphene Oxide Prepared by Different Chemical Oxidation Methods. Ceram. Int. 2019;45:14439–14448. doi: 10.1016/j.ceramint.2019.04.165. DOI

Strankowski M., Włodarczyk D., Piszczyk Ł., Strankowska J. Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies. J. Spectrosc. 2016;2016:e7520741. doi: 10.1155/2016/7520741. DOI

Saleem H., Haneef M., Abbasi H.Y. Synthesis Route of Reduced Graphene Oxide via Thermal Reduction of Chemically Exfoliated Graphene Oxide. Mater. Chem. Phys. 2018;204:1–7. doi: 10.1016/j.matchemphys.2017.10.020. DOI

Pielichowski K., Leszczyńska A. TG-FTIR Study of the Thermal Degradation of Polyoxymethylene (POM)/Thermoplastic Polyurethane (TPU) Blends. J. Therm. Anal. Calorim. 2004;78:631–637. doi: 10.1023/B:JTAN.0000046124.19405.aa. DOI

Zhou X., Li X., Sun H., Sun P., Liang X., Liu F., Hu X., Lu G. Nanosheet-Assembled ZnFe2O4 Hollow Microspheres for High-Sensitive Acetone Sensor. ACS Appl. Mater. Interfaces. 2015;7:15414–15421. doi: 10.1021/acsami.5b03537. PubMed DOI

Zheng X., Feng J., Zong Y., Miao H., Hu X., Bai J., Li X. Hydrophobic Graphene Nanosheets Decorated by Monodispersed Superparamagnetic Fe3O4 Nanocrystals as Synergistic Electromagnetic Wave Absorbers. J. Mater. Chem. C. 2015;3:4452–4463. doi: 10.1039/C5TC00313J. DOI

Hammad T.M., Kuhn S., Amsha A.A., Hempelmann R. Investigation of structural, optical, and magnetic properties of Co2+ ions substituted CuFe2O4 spinel ferrite nanoparticles prepared via precipitation approach. J. Aust. Ceram. Soc. 2021;57:543–553. doi: 10.1007/s41779-020-00556-z. DOI

Ahmad I., Abbas T., Islam M.U., Maqsood A. Study of cation distribution for Cu–Co nanoferrites synthesized by the sol–gel method. Ceram. Int. 2013;39:6735–6741. doi: 10.1016/j.ceramint.2013.02.001. DOI

Singh C., Bansal S., Kumar V., Tikoo K.B., Singhal S. Encrustation of cobalt doped copper ferrite nanoparticles on solid scaffold CNTs and their comparison with corresponding ferrite nanoparticles: A study of structural, optical, magnetic and photo catalytic properties. RSC Adv. 2015;5:39052–39061. doi: 10.1039/C5RA03330F. DOI

Chen G.-H., Chen H.-S. Nanometer-Thick Sol–Gel Silica–Titania Film Infused with Superparamagnetic Fe3O4 Nanoparticles for Electromagnetic Interference Shielding. ACS Appl. Nano Mater. 2020;3:8858–8865. doi: 10.1021/acsanm.0c01634. DOI

Liu T., Pang Y., Kikuchi H., Kamada Y., Takahashi S. Superparamagnetic Property and High Microwave Absorption Performance of FeAl@(Al, Fe)2O3 Nanoparticles Induced by Surface Oxidation. J. Mater. Chem. C. 2015;3:6232–6239. doi: 10.1039/C5TC00418G. DOI

Li X., Feng J., Zhu H., Qu C., Bai J., Zheng X. Sandwich-like Graphene Nanosheets Decorated with Superparamagnetic CoFe2O4 Nanocrystals and Their Application as an Enhanced Electromagnetic Wave Absorber. RSC Adv. 2014;4:33619–33625. doi: 10.1039/C4RA06732K. DOI

Pawar S.P., Stephen S., Bose S., Mittal V. Tailored Electrical Conductivity, Electromagnetic Shielding and Thermal Transport in Polymeric Blends with Graphene Sheets Decorated with Nickel Nanoparticles. Phys. Chem. Chem. Phys. 2015;17:14922–14930. doi: 10.1039/C5CP00899A. PubMed DOI

Mondal S., Ganguly S., Das P., Khastgir D., Das N.C. Low Percolation Threshold and Electromagnetic Shielding Effectiveness of Nano-Structured Carbon Based Ethylene Methyl Acrylate Nanocomposites. Compos. Part B Eng. 2017;119:41–56. doi: 10.1016/j.compositesb.2017.03.022. DOI

Wei H., Zhang Z., Hussain G., Zhou L., Li Q., Ostrikov K.K. Techniques to Enhance Magnetic Permeability in Microwave Absorbing Materials. Appl. Mater. Today. 2020;19:100596. doi: 10.1016/j.apmt.2020.100596. DOI

Jin X., Wang J., Dai L., Liu X., Li L., Yang Y., Cao Y., Wang W., Wu H., Guo S. Flame-Retardant Poly(Vinyl Alcohol)/MXene Multilayered Films with Outstanding Electromagnetic Interference Shielding and Thermal Conductive Performances. Chem. Eng. J. 2020;380:122475. doi: 10.1016/j.cej.2019.122475. DOI

Hu L., Kang Z. Enhanced flexible polypropylene fabric with silver/magnetic carbon nanotubes coatings for electromagnetic interference shielding. Appl. Surf. Sci. 2021;568:150845. doi: 10.1016/j.apsusc.2021.150845. DOI

Ali N.N., Atassi Y., Salloum A., Charba A., Malki A., Jafarian M. Comparative Study of Microwave Absorption Characteristics of (Polyaniline/NiZn Ferrite) Nanocomposites with Different Ferrite Percentages. Mater. Chem. Phys. 2018;211:79–87. doi: 10.1016/j.matchemphys.2018.02.017. DOI

Gunasekaran S., Thanrasu K., Manikandan A., Durka M., Dinesh A., Anand S., Shankar S., Slimani Y., Almessiere M.A., Baykal A. Structural, Fabrication and Enhanced Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide (RGO)/Zirconium Substituted Cobalt Ferrite (Co0·5Zr0·5Fe2O4) Nanocomposites. Phys. B Condens. Matter. 2021;605:412784. doi: 10.1016/j.physb.2020.412784. DOI

Gahlout P., Choudhary V. EMI Shielding Response of Polypyrrole-MWCNT/Polyurethane Composites. Synth. Met. 2020;266:116414. doi: 10.1016/j.synthmet.2020.116414. DOI

Sulaiman J.M.A., Ismail M.M., Rafeeq S.N., Mandal A. Enhancement of Electromagnetic Interference Shielding Based on Co0.5Zn0.5Fe2O4/PANI-PTSA Nanocomposites. Appl. Phys. A. 2020;126:236. doi: 10.1007/s00339-020-3413-z. DOI

Shakir M.F., Tariq A., Rehan Z.A., Nawab Y., Abdul Rashid I., Afzal A., Hamid U., Raza F., Zubair K., Rizwan M.S., et al. Effect of Nickel-Spinal-Ferrites on EMI Shielding Properties of Polystyrene/Polyaniline Blend. SN Appl. Sci. 2020;2:706. doi: 10.1007/s42452-020-2535-4. DOI

Li X., Shu R., Wu Y., Zhang J., Wan Z. Fabrication of Nitrogen-Doped Reduced Graphene Oxide/Cobalt Ferrite Hybrid Nanocomposites as Broadband Electromagnetic Wave Absorbers in Both X and Ku Bands. Synth. Met. 2021;271:116621. doi: 10.1016/j.synthmet.2020.116621. DOI

Arief I., Biswas S., Bose S. Wool-Ball-Type Core-Dual-Shell FeCo@SiO2@MWCNTs Microcubes for Screening Electromagnetic Interference. ACS Appl. Nano Mater. 2018;1:2261–2271. doi: 10.1021/acsanm.8b00333. DOI

Luo J., Zuo Y., Shen P., Yan Z., Zhang K. Excellent Microwave Absorption Properties by Tuned Electromagnetic Parameters in Polyaniline-Coated Ba0.9La0.1Fe11.9Ni0.1O19/Reduced Graphene Oxide Nanocomposites. RSC Adv. 2017;7:36433–36443. doi: 10.1039/C7RA06800J. DOI

Verma M., Singh A.P., Sambyal P., Singh B.P., Dhawan S.K., Choudhary V. Barium Ferrite Decorated Reduced Graphene Oxide Nanocomposite for Effective Electromagnetic Interference Shielding. Phys. Chem. Chem. Phys. 2014;17:1610–1618. doi: 10.1039/C4CP04284K. PubMed DOI

Yin Y., Zeng M., Liu J., Tang W., Dong H., Xia R., Yu R. Enhanced High-Frequency Absorption of Anisotropic Fe3O4/Graphene Nanocomposites. Sci. Rep. 2016;6:25075. doi: 10.1038/srep25075. PubMed DOI PMC

Tang X.T., Wei G.T., Zhu T.X., Sheng L.M., An K., Yu L.M., Liu Y., Zhao X.L. Microwave Absorption Performance Enhanced by High-Crystalline Graphene and BaFe12O19 Nanocomposites. J. Appl. Phys. 2016;119:204301. doi: 10.1063/1.4951002. DOI

Sharma A.L., Thakur A.K. AC Conductivity and Relaxation Behavior in Ion Conducting Polymer Nanocomposite. Ionics. 2011;17:135–143. doi: 10.1007/s11581-010-0502-6. DOI

Yu H., Wang T., Wen B., Lu M., Xu Z., Zhu C., Chen Y., Xue X., Sun C., Cao M. Graphene/Polyaniline Nanorod Arrays: Synthesis and Excellent Electromagnetic Absorption Properties. J. Mater. Chem. 2012;22:21679–21685. doi: 10.1039/c2jm34273a. DOI

Zhou X., Chuai D., Zhu D. Electrospun Synthesis of Reduced Graphene Oxide (RGO)/NiZn Ferrite Nanocomposites for Excellent Microwave Absorption Properties. J. Supercond. Nov. Magn. 2019;32:2687–2697. doi: 10.1007/s10948-019-5039-y. DOI

Wang H., Zhang Z., Dong C., Chen G., Wang Y., Guan H. Carbon Spheres@MnO2 Core-Shell Nanocomposites with Enhanced Dielectric Properties for Electromagnetic Shielding. Sci. Rep. 2017;7:15841. doi: 10.1038/s41598-017-16059-0. PubMed DOI PMC

Wang F., Li X., Chen Z., Yu W., Loh K.P., Zhong B., Shi Y., Xu Q.H. Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem. Eng. J. 2021;405:126676. doi: 10.1016/j.cej.2020.126676. DOI

Rostami M., Majles Ara M.H. The Dielectric, Magnetic and Microwave Absorption Properties of Cu-Substituted Mg-Ni Spinel Ferrite-MWCNT Nanocomposites. Ceram. Int. 2019;45:7606–7613. doi: 10.1016/j.ceramint.2019.01.056. DOI

Cao M., Wang X., Cao W., Fang X., Wen B., Yuan J. Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion. Small. 2018;14:1800987. doi: 10.1002/smll.201800987. PubMed DOI

Liu P., Yao Z., Zhou J., Yang Z., Kong L.B. Small Magnetic Co-Doped NiZn Ferrite/Graphene Nanocomposites and Their Dual-Region Microwave Absorption Performance. J. Mater. Chem. C. 2016;4:9738–9749. doi: 10.1039/C6TC03518C. DOI

Guo J., Song H., Liu H., Luo C., Ren Y., Ding T., Khan M.A., Young D.P., Liu X., Zhang X., et al. Polypyrrole-Interface-Functionalized Nano-Magnetite Epoxy Nanocomposites as Electromagnetic Wave Absorbers with Enhanced Flame Retardancy. J. Mater. Chem. C. 2017;5:5334–5344. doi: 10.1039/C7TC01502J. DOI

Raju P., Shankar J., Anjaiah J., Kalyani C., Rani G.N. Complex Permittivity and Permeability Properties Analysis of NiCuZn Ferrite-Polymer Nanocomposites for EMI Suppressor Applications. J. Phys. Conf. Ser. 2020;1495:012001. doi: 10.1088/1742-6596/1495/1/012001. DOI

Mondal S., Ghosh S., Ganguly S., Das P., Ravindren R., Sit S., Chakraborty G., Das N.C. Highly Conductive and Flexible Nano-Structured Carbon-Based Polymer Nanocomposites with Improved Electromagnetic-Interference-Shielding Performance. Mater. Res. Express. 2017;4:105039. doi: 10.1088/2053-1591/aa9032. DOI

Bhingardive V., Sharma M., Suwas S., Madras G., Bose S. Polyvinylidene Fluoride Based Lightweight and Corrosion Resistant Electromagnetic Shielding Materials. RSC Adv. 2015;5:35909–35916. doi: 10.1039/C5RA05625J. DOI

Jiao Z., Yao Z., Zhou J., Qian K., Lei Y., Wei B., Chen W. Enhanced Microwave Absorption Properties of Nd-Doped NiZn Ferrite/Polyaniline Nanocomposites. Ceram. Int. 2020;46:25405–25414. doi: 10.1016/j.ceramint.2020.07.010. DOI

Shu R., Li W., Zhou X., Tian D., Zhang G., Gan Y., Shi J., He J. Facile Preparation and Microwave Absorption Properties of RGO/MWCNTs/ZnFe2O4 Hybrid Nanocomposites. J. Alloy. Compd. 2018;743:163–174. doi: 10.1016/j.jallcom.2018.02.016. DOI

Wu Y., Shu R., Li Z., Guo C., Zhang G., Zhang J., Li W. Design and Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide/Multi-Walled Carbon Nanotubes/Nickel Ferrite Ternary Nanocomposites. J. Alloy. Compd. 2019;784:887–896. doi: 10.1016/j.jallcom.2019.01.139. DOI

Liu W., Shao Q., Ji G., Liang X., Cheng Y., Quan B., Du Y. Metal–Organic-Frameworks Derived Porous Carbon-Wrapped Ni Composites with Optimized Impedance Matching as Excellent Lightweight Electromagnetic Wave Absorber. Chem. Eng. J. 2017;313:734–744. doi: 10.1016/j.cej.2016.12.117. DOI

Shen W., Ren B., Cai K., Song Y., Wang W. Synthesis of Nonstoichiometric Co0.8Fe2.2O4/Reduced Graphene Oxide (RGO) Nanocomposites and Their Excellent Electromagnetic Wave Absorption Property. J. Alloy. Compd. 2019;774:997–1008. doi: 10.1016/j.jallcom.2018.09.361. DOI

Gao S., An Q., Xiao Z., Zhai S., Shi Z. Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 2018;8:19011. doi: 10.1039/C8RA00913A. PubMed DOI PMC

Liu X., Zhao X., Yan J., Huang Y., Li T., Liu P. Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly(3,4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite. Carbon. 2021;178:273–284. doi: 10.1016/j.carbon.2021.03.042. DOI

Ma W., He P., Wang T., Xu J., Liu X., Zhuang Q., Cui Z.-K., Lin S. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021;420:129875. doi: 10.1016/j.cej.2021.129875. DOI

Xiong L., Yu M., Liu J., Li S., Xue B. Preparation and evaluation of the microwave absorption properties of template-free graphene foam-supported Ni nanoparticles. RSC Adv. 2017;7:14733. doi: 10.1039/C6RA27435H. DOI

Fang C., Zhang Z., Bing X., Lei Y. Preparation, Characterization and Electrochemical Performance of Graphene from Microcrystalline Graphite. J. Mater. Sci. Mater. Electron. 2017;28:19174–19180. doi: 10.1007/s10854-017-7876-4. DOI

Naghdi S., Jaleh B., Eslamipanah M., Moradi A., Abdollahi M., Einali N., Rhee K.Y. Graphene family, and their hybrid structures for electromagnetic interference shielding applications: Recent trends and prospects. J. Alloy. Compd. 2022;900:163176. doi: 10.1016/j.jallcom.2021.163176. DOI

Rasul M.G., Kiziltas A., Arfaei B., Shahbazian-Yassar R. 2D boron nitride nanosheets for polymer composite materials. NPJ 2D Mater. Appl. 2021;5:56. doi: 10.1038/s41699-021-00231-2. DOI

Bustamante-Torres M., Romero-Fierro D., Arcentales-Vera B., Pardo S., Bucio E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers. 2021;13:2998. doi: 10.3390/polym13172998. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...