CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-23647S
Czech Science Foundation
DKRVO (RP/CPS/2020/006)
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
35269754
PubMed Central
PMC8910661
DOI
10.3390/ijms23052610
PII: ijms23052610
Knihovny.cz E-zdroje
- Klíčová slova
- electromagnetic interference shielding, magnetic nanoparticles, nanocomposites, reduced graphene oxide, spinel ferrite,
- MeSH
- grafit MeSH
- nanočástice * MeSH
- nanokompozity * MeSH
- oxid hlinitý MeSH
- oxid hořečnatý MeSH
- polyurethany MeSH
- železité sloučeniny MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ferrite MeSH Prohlížeč
- grafit MeSH
- graphene oxide MeSH Prohlížeč
- oxid hlinitý MeSH
- oxid hořečnatý MeSH
- polyurethany MeSH
- spinell MeSH Prohlížeč
- železité sloučeniny MeSH
CuxCo1-xFe2O4 (x = 0.33, 0.67, 1)-reduced graphene oxide (rGO)-thermoplastic polyurethane (TPU) nanocomposites exhibiting highly efficient electromagnetic interference (EMI) shielding were prepared by a melt-mixing approach using a microcompounder. Spinel ferrite Cu0.33Co0.67Fe2O4 (CuCoF1), Cu0.67Co0.33Fe2O4 (CuCoF2) and CuFe2O4 (CuF3) nanoparticles were synthesized using the sonochemical method. The CuCoF1 and CuCoF2 exhibited typical ferromagnetic features, whereas CuF3 displayed superparamagnetic characteristics. The maximum value of EMI total shielding effectiveness (SET) was noticed to be 42.9 dB, 46.2 dB, and 58.8 dB for CuCoF1-rGO-TPU, CuCoF2-rGO-TPU, and CuF3-rGO-TPU nanocomposites, respectively, at a thickness of 1 mm. The highly efficient EMI shielding performance was attributed to the good impedance matching, conductive, dielectric, and magnetic loss. The demonstrated nanocomposites are promising candidates for a lightweight, flexible, and highly efficient EMI shielding material.
Zobrazit více v PubMed
Yadav R.S., Kuřitka I., Vilčáková J. Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications. Elsevier; Cambridge, MA, USA: 2020.
Bhawal P., Ganguly S., Das T.K., Mondal S., Choudhury S., Das N.C. Superior Electromagnetic Interference Shielding Effectiveness and Electro-Mechanical Properties of EMA-IRGO Nanocomposites through the in-Situ Reduction of GO from Melt Blended EMA-GO Composites. Compos. Part B Eng. 2018;134:46–60. doi: 10.1016/j.compositesb.2017.09.046. DOI
Kumaran R., kumar S.D., Balasubramanian N., Alagar M., Subramanian V., Dinakaran K. Enhanced Electromagnetic Interference Shielding in a Au–MWCNT Composite Nanostructure Dispersed PVDF Thin Films. J. Phys. Chem. C. 2016;120:13771–13778. doi: 10.1021/acs.jpcc.6b01333. DOI
Ravindren R., Mondal S., Nath K., Das N.C. Prediction of Electrical Conductivity, Double Percolation Limit and Electromagnetic Interference Shielding Effectiveness of Copper Nanowire Filled Flexible Polymer Blend Nanocomposites. Compos. Part B Eng. 2019;164:559–569. doi: 10.1016/j.compositesb.2019.01.066. DOI
Duan H., He P., Zhu H., Yang Y., Zhao G., Liu Y. Constructing 3D Carbon-Metal Hybrid Conductive Network in Polymer for Ultra-Efficient Electromagnetic Interference Shielding. Compos. Part B Eng. 2021;212:108690. doi: 10.1016/j.compositesb.2021.108690. DOI
Paun C., Obreja C., Comanescu F., Tucureanu V., Tutunaru O., Romanitan C., Ionescu O., Gavrila D.E., Paltanea V.M., Stoica V., et al. Studies on Structural MWCNT/Epoxy Nanocomposites for EMI Shielding Applications. IOP Conf. Ser. Mater. Sci. Eng. 2021;1009:012046. doi: 10.1088/1757-899X/1009/1/012046. DOI
Rani P., Ahamed B., Deshmukh K. Dielectric and Electromagnetic Interference Shielding Properties of Zeolite 13X and Carbon Black Nanoparticles Based PVDF Nanocomposites. J. Appl. Polym. Sci. 2021;138:50107. doi: 10.1002/app.50107. DOI
Gulzar N., Zubair K., Shakir M.F., Zahid M., Nawab Y., Rehan Z.A. Effect on the EMI Shielding Properties of Cobalt Ferrites and Coal-Fly-Ash Based Polymer Nanocomposites. J. Supercond. Nov. Magn. 2020;33:3519–3524. doi: 10.1007/s10948-020-05608-w. DOI
Valentini M., Piana F., Pionteck J., Lamastra F.R., Nanni F. Electromagnetic Properties and Performance of Exfoliated Graphite (EG)—Thermoplastic Polyurethane (TPU) Nanocomposites at Microwaves. Compos. Sci. Technol. 2015;114:26–33. doi: 10.1016/j.compscitech.2015.03.006. DOI
Zahid M., Nawab Y., Gulzar N., Rehan Z.A., Shakir M.F., Afzal A., Abdul Rashid I., Tariq A. Fabrication of reduced graphene oxide (RGO) and nanocomposite with thermoplastic polyurethane (TPU) for EMI shielding application. J. Mater. Sci. Mater. Electron. 2020;31:967–974. doi: 10.1007/s10854-019-02607-z. DOI
Sobha A.P., Sreekala P.S., Narayanankutty S.K. Electrical, Thermal, Mechanical and Electromagnetic Interference Shielding Properties of PANI/FMWCNT/TPU Composites. Prog. Org. Coat. 2017;113:168–174. doi: 10.1016/j.porgcoat.2017.09.001. DOI
Yadav R.S., Anju, Jamatia T., Kuřitka I., Vilčáková J., Škoda D., Urbánek P., Machovský M., Masař M., Urbánek M., et al. Excellent, Lightweight and Flexible Electromagnetic Interference Shielding Nanocomposites Based on Polypropylene with MnFe2O4 Spinel Ferrite Nanoparticles and Reduced Graphene Oxide. Nanomaterials. 2020;10:2481. doi: 10.3390/nano10122481. PubMed DOI PMC
Kumar A., Singh A.K., Tomar M., Gupta V., Kumar P., Singh K. Electromagnetic Interference Shielding Performance of Lightweight NiFe2O4/RGO Nanocomposite in X- Band Frequency Range. Ceram. Int. 2020;46:15473–15481. doi: 10.1016/j.ceramint.2020.03.092. DOI
Dey C.C., Mahapatra A.S., Sadhukhan S., Chakrabarti P.K. Electromagnetic Shielding Performance of Co0.5Zn0.4Cu0.1Fe2O4-GO/Paraffin Wax Hybrid Nanocomposite through Magnetic Energy Morphing Prepared by Facile Synthesis Method. Mater. Today Commun. 2021;27:102190. doi: 10.1016/j.mtcomm.2021.102190. DOI
Ismail M.M., Rafeeq S.N., Sulaiman J.M.A., Mandal A. Electromagnetic Interference Shielding and Microwave Absorption Properties of Cobalt Ferrite CoFe2O4/Polyaniline Composite. Appl. Phys. A. 2018;124:380. doi: 10.1007/s00339-018-1808-x. DOI
Chitra P., Kumar E.R., Pushpagiri T., Steephen A. Size and Phase Purity–Dependent Microstructural and Magnetic Properties of Spinel Ferrite Nanoparticles. J. Supercond. Nov. Magn. 2021;34:1239–1244. doi: 10.1007/s10948-021-05831-z. DOI
Thanh N.K., Loan T.T., Anh L.N., Duong N.P., Soontaranon S., Thammajak N., Hien T.D. Cation Distribution in CuFe2O4 Nanoparticles: Effects of Ni Doping on Magnetic Properties. J. Appl. Phys. 2016;120:142115. doi: 10.1063/1.4961722. DOI
Zhu G., Xu H., Xiao Y., Liu Y., Yuan A., Shen X. Facile Fabrication and Enhanced Sensing Properties of Hierarchically Porous CuO Architectures. ACS Appl. Mater. Interfaces. 2012;4:744–751. doi: 10.1021/am2013882. PubMed DOI
Amulya M.A.S., Nagaswarupa H.P., Kumar M.R.A., Ravikumar C.R., Kusuma K.B., Prashantha S.C. Evaluation of bifunctional applications of CuFe2O4 nanoparticles synthesized by a sonochemical method. J. Phys. Chem. Solids. 2021;148:109756. doi: 10.1016/j.jpcs.2020.109756. DOI
Gao S., Chen X., Pan F., Song K., Zhao C., Liu L., Liu X., Zhao D. Efect of secondary phase on the electromagnetic shielding efectiveness of magnesium alloy. Sci. Rep. 2018;8:1625. doi: 10.1038/s41598-018-19933-7. PubMed DOI PMC
Song L., Duan Y., Cui Y., Huang Z. Fe-Doped MnO2 Nanostructures for Attenuation−Impedance Balance-Boosted Microwave Absorption. ACS Appl. Nano Mater. 2022;5:2738. doi: 10.1021/acsanm.1c04410. DOI
Tedjieukeng H.M.K., Tsobnang P.K., Fomekong R.L., Etape E.P., Joy P.A., Delcorte A., Lambi J.N. Structural Characterization and Magnetic Properties of Undoped and Copper-Doped Cobalt Ferrite Nanoparticles Prepared by the Octanoate Coprecipitation Route at Very Low Dopant Concentrations. RSC Adv. 2018;8:38621–38630. doi: 10.1039/C8RA08532C. PubMed DOI PMC
Anugraha A., Lakshmi V.K., Kumar G.S., Raguram T., Rajni K.S. Synthesis and Characterisation of Copper Substituted Cobalt Ferrite Nanoparticles by Sol-Gel Auto Combustion Route. IOP Conf. Ser. Mater. Sci. Eng. 2019;577:012059. doi: 10.1088/1757-899X/577/1/012059. DOI
Jnaneshwara D.M., Avadhani D.N., Daruka Prasad B., Nagabhushana H., Nagabhushana B.M., Sharma S.C., Prashantha S.C., Shivakumara C. Role of Cu2+ Ions Substitution in Magnetic and Conductivity Behavior of Nano-CoFe2O4. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;132:256–262. doi: 10.1016/j.saa.2014.04.179. PubMed DOI
Mahalakshmi S., Jayasri R., Nithiyanatham S., Swetha S., Santhi K. Magnetic Interactions and Dielectric Behaviour of Cobalt Ferrite and Barium Titanate Multiferroics Nanocomposites. Appl. Surf. Sci. 2019;494:51–56. doi: 10.1016/j.apsusc.2019.07.096. DOI
Chen Y., Pötschke P., Pionteck J., Voit B., Qi H. Multifunctional Cellulose/RGO/Fe3O4 Composite Aerogels for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2020;12:22088–22098. doi: 10.1021/acsami.9b23052. PubMed DOI
Jing X., Mi H.-Y., Huang H.-X., Turng L.-S. Shape Memory Thermoplastic Polyurethane (TPU)/Poly(ε-Caprolactone) (PCL) Blends as Self-Knotting Sutures. J. Mech. Behav. Biomed. Mater. 2016;64:94–103. doi: 10.1016/j.jmbbm.2016.07.023. PubMed DOI
Beniwal A. Sunny Novel TPU/Fe2O3 and TPU/Fe2O3/PPy Nanocomposites Synthesized Using Electrospun Nanofibers Investigated for Analyte Sensing Applications at Room Temperature. Sens. Actuators B Chem. 2020;304:127384. doi: 10.1016/j.snb.2019.127384. DOI
Kumar S., Gupta T.K., Varadarajan K.M. Strong, Stretchable and Ultrasensitive MWCNT/TPU Nanocomposites for Piezoresistive Strain Sensing. Compos. Part B Eng. 2019;177:107285. doi: 10.1016/j.compositesb.2019.107285. DOI
Anju, Yadav R.S., Pötschke P., Pionteck J., Krause B., Kuřitka I., Vilcakova J., Skoda D., Urbánek P., Machovsky M., et al. High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+-Substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution. ACS Omega. 2021;6:28098–28118. doi: 10.1021/acsomega.1c04192. PubMed DOI PMC
Barick A.K., Tripathy D.K. Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites. Mater. Sci. Eng. B. 2011;176:1435–1447. doi: 10.1016/j.mseb.2011.08.001. DOI
Chandramohan P., Srinivasan M.P., Velmurugan S., Narasimhan S.V. Cation distribution and particle size effect on Raman spectrum of CoFe2O4. J. Solid State Chem. 2011;184:89–96. doi: 10.1016/j.jssc.2010.10.019. DOI
Nandan B., Bhatnagar M.C., Kashyap S.C. Cation Distribution in Nanocrystalline Cobalt Substituted Nickel Ferrites: X-ray Diffraction and Raman Spectroscopic Investigations. J. Phys. Chem. Solids. 2019;129:298–306. doi: 10.1016/j.jpcs.2019.01.017. DOI
Sumalatha M., Shravan kumar Reddy S., Reddy M.S., Sripada S., Raja M.M., Reddy C.G., Reddy P.Y., Reddy V.R. Raman and In-Field 57Fe Mössbauer Study of Cation Distribution in Ga Substituted Cobalt Ferrite (CoFe2-xGaxO4) J. Alloy. Compd. 2020;837:155478. doi: 10.1016/j.jallcom.2020.155478. DOI
Hidayah N.M.S., Liu W.-W., Lai C.-W., Noriman N.Z., Khe C.-S., Hashim U., Lee H.C. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. AIP Conf. Proc. 2017;1892:150002. doi: 10.1063/1.5005764. DOI
Sadhukhan S., Ghosh T.K., Roy I., Rana D., Bhattacharyya A., Saha R., Chattopadhyay S., Khatua S., Acharya K., Chattopadhyay D. Green Synthesis of Cadmium Oxide Decorated Reduced Graphene Oxide Nanocomposites and Its Electrical and Antibacterial Properties. Mater. Sci. Eng. C. 2019;99:696–709. doi: 10.1016/j.msec.2019.01.128. PubMed DOI
Konios D., Stylianakis M.M., Stratakis E., Kymakis E. Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. J. Colloid Interface Sci. 2014;430:108–112. doi: 10.1016/j.jcis.2014.05.033. PubMed DOI
Gnanaseelan M., Samanta S., Pionteck J., Jehnichen D., Simon F., Pötschke P., Voit B. Vanadium salt assisted solvothermal reduction of graphene oxide and the thermoelectric characterisation of the reduced graphene oxide in bulk and as composite. Mater. Chem. Phys. 2019;229:319–329. doi: 10.1016/j.matchemphys.2019.03.002. DOI
Aradhana R., Mohanty S., Nayak S.K. Comparison of Mechanical, Electrical and Thermal Properties in Graphene Oxide and Reduced Graphene Oxide Filled Epoxy Nanocomposite Adhesives. Polymer. 2018;141:109–123. doi: 10.1016/j.polymer.2018.03.005. DOI
Muzyka R., Drewniak S., Pustelny T., Chrubasik M., Gryglewicz G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy. Materials. 2018;11:1050. doi: 10.3390/ma11071050. PubMed DOI PMC
Khan Q.A., Shaur A., Khan T.A., Joya Y.F., Awan M.S. Characterization of Reduced Graphene Oxide Produced through a Modified Hoffman Method. Cogent Chem. 2017;3:1298980. doi: 10.1080/23312009.2017.1298980. DOI
de León A.S., Domínguez-Calvo A., Molina S.I. Materials with Enhanced Adhesive Properties Based on Acrylonitrile-Butadiene-Styrene (ABS)/Thermoplastic Polyurethane (TPU) Blends for Fused Filament Fabrication (FFF) Mater. Des. 2019;182:108044. doi: 10.1016/j.matdes.2019.108044. DOI
Galindo B., Alcolea S.G., Gómez J., Navas A., Murguialday A.O., Fernandez M.P., Puelles R.C. Effect of the Number of Layers of Graphene on the Electrical Properties of TPU Polymers. IOP Conf. Ser. Mater. Sci. Eng. 2014;64:012008. doi: 10.1088/1757-899X/64/1/012008. DOI
Ati A.A., Othaman Z., Samavati A. Influence of Cobalt on Structural and Magnetic Properties of Nickel Ferrite Nanoparticles. J. Mol. Struct. 2013;1052:177–182. doi: 10.1016/j.molstruc.2013.08.040. DOI
Samoila P., Cojocaru C., Cretescu I., Stan C.D., Nica V., Sacarescu L., Harabagiu V. Nanosized Spinel Ferrites Synthesized by Sol-Gel Autocombustion for Optimized Removal of Azo Dye from Aqueous Solution. J. Nanomater. 2015;2015:e713802. doi: 10.1155/2015/713802. DOI
Karimi Z., Mohammadifar Y., Shokrollahi H., Asl S.K., Yousefi G., Karimi L. Magnetic and Structural Properties of Nano Sized Dy-Doped Cobalt Ferrite Synthesized by Co-Precipitation. J. Magn. Magn. Mater. 2014;361:150–156. doi: 10.1016/j.jmmm.2014.01.016. DOI
Patange S.M., Shirsath S.E., Toksha B.G., Jadhav S.S., Shukla S.J., Jadhav K.M. Cation Distribution by Rietveld, Spectral and Magnetic Studies of Chromium-Substituted Nickel Ferrites. Appl. Phys. A. 2009;95:429–434. doi: 10.1007/s00339-008-4897-0. DOI
Avazpour L., Zandi khajeh M.A., Toroghinejad M.R., Shokrollahi H. Synthesis of Single-Phase Cobalt Ferrite Nanoparticles via a Novel EDTA/EG Precursor-Based Route and Their Magnetic Properties. J. Alloy. Compd. 2015;637:497–503. doi: 10.1016/j.jallcom.2015.03.041. DOI
Sharma N., Sharma V., Jain Y., Kumari M., Gupta R., Sharma S.K., Sachdev K. Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO) for Gas Sensing Application. Macromol. Symp. 2017;376:1700006. doi: 10.1002/masy.201700006. DOI
Zhang C., Dabbs D.M., Liu L.-M., Aksay I.A., Car R., Selloni A. Combined Effects of Functional Groups, Lattice Defects, and Edges in the Infrared Spectra of Graphene Oxide. J. Phys. Chem. C. 2015;119:18167–18176. doi: 10.1021/acs.jpcc.5b02727. DOI
Al-Gaashani R., Najjar A., Zakaria Y., Mansour S., Atieh M.A. XPS and Structural Studies of High Quality Graphene Oxide and Reduced Graphene Oxide Prepared by Different Chemical Oxidation Methods. Ceram. Int. 2019;45:14439–14448. doi: 10.1016/j.ceramint.2019.04.165. DOI
Strankowski M., Włodarczyk D., Piszczyk Ł., Strankowska J. Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies. J. Spectrosc. 2016;2016:e7520741. doi: 10.1155/2016/7520741. DOI
Saleem H., Haneef M., Abbasi H.Y. Synthesis Route of Reduced Graphene Oxide via Thermal Reduction of Chemically Exfoliated Graphene Oxide. Mater. Chem. Phys. 2018;204:1–7. doi: 10.1016/j.matchemphys.2017.10.020. DOI
Pielichowski K., Leszczyńska A. TG-FTIR Study of the Thermal Degradation of Polyoxymethylene (POM)/Thermoplastic Polyurethane (TPU) Blends. J. Therm. Anal. Calorim. 2004;78:631–637. doi: 10.1023/B:JTAN.0000046124.19405.aa. DOI
Zhou X., Li X., Sun H., Sun P., Liang X., Liu F., Hu X., Lu G. Nanosheet-Assembled ZnFe2O4 Hollow Microspheres for High-Sensitive Acetone Sensor. ACS Appl. Mater. Interfaces. 2015;7:15414–15421. doi: 10.1021/acsami.5b03537. PubMed DOI
Zheng X., Feng J., Zong Y., Miao H., Hu X., Bai J., Li X. Hydrophobic Graphene Nanosheets Decorated by Monodispersed Superparamagnetic Fe3O4 Nanocrystals as Synergistic Electromagnetic Wave Absorbers. J. Mater. Chem. C. 2015;3:4452–4463. doi: 10.1039/C5TC00313J. DOI
Hammad T.M., Kuhn S., Amsha A.A., Hempelmann R. Investigation of structural, optical, and magnetic properties of Co2+ ions substituted CuFe2O4 spinel ferrite nanoparticles prepared via precipitation approach. J. Aust. Ceram. Soc. 2021;57:543–553. doi: 10.1007/s41779-020-00556-z. DOI
Ahmad I., Abbas T., Islam M.U., Maqsood A. Study of cation distribution for Cu–Co nanoferrites synthesized by the sol–gel method. Ceram. Int. 2013;39:6735–6741. doi: 10.1016/j.ceramint.2013.02.001. DOI
Singh C., Bansal S., Kumar V., Tikoo K.B., Singhal S. Encrustation of cobalt doped copper ferrite nanoparticles on solid scaffold CNTs and their comparison with corresponding ferrite nanoparticles: A study of structural, optical, magnetic and photo catalytic properties. RSC Adv. 2015;5:39052–39061. doi: 10.1039/C5RA03330F. DOI
Chen G.-H., Chen H.-S. Nanometer-Thick Sol–Gel Silica–Titania Film Infused with Superparamagnetic Fe3O4 Nanoparticles for Electromagnetic Interference Shielding. ACS Appl. Nano Mater. 2020;3:8858–8865. doi: 10.1021/acsanm.0c01634. DOI
Liu T., Pang Y., Kikuchi H., Kamada Y., Takahashi S. Superparamagnetic Property and High Microwave Absorption Performance of FeAl@(Al, Fe)2O3 Nanoparticles Induced by Surface Oxidation. J. Mater. Chem. C. 2015;3:6232–6239. doi: 10.1039/C5TC00418G. DOI
Li X., Feng J., Zhu H., Qu C., Bai J., Zheng X. Sandwich-like Graphene Nanosheets Decorated with Superparamagnetic CoFe2O4 Nanocrystals and Their Application as an Enhanced Electromagnetic Wave Absorber. RSC Adv. 2014;4:33619–33625. doi: 10.1039/C4RA06732K. DOI
Pawar S.P., Stephen S., Bose S., Mittal V. Tailored Electrical Conductivity, Electromagnetic Shielding and Thermal Transport in Polymeric Blends with Graphene Sheets Decorated with Nickel Nanoparticles. Phys. Chem. Chem. Phys. 2015;17:14922–14930. doi: 10.1039/C5CP00899A. PubMed DOI
Mondal S., Ganguly S., Das P., Khastgir D., Das N.C. Low Percolation Threshold and Electromagnetic Shielding Effectiveness of Nano-Structured Carbon Based Ethylene Methyl Acrylate Nanocomposites. Compos. Part B Eng. 2017;119:41–56. doi: 10.1016/j.compositesb.2017.03.022. DOI
Wei H., Zhang Z., Hussain G., Zhou L., Li Q., Ostrikov K.K. Techniques to Enhance Magnetic Permeability in Microwave Absorbing Materials. Appl. Mater. Today. 2020;19:100596. doi: 10.1016/j.apmt.2020.100596. DOI
Jin X., Wang J., Dai L., Liu X., Li L., Yang Y., Cao Y., Wang W., Wu H., Guo S. Flame-Retardant Poly(Vinyl Alcohol)/MXene Multilayered Films with Outstanding Electromagnetic Interference Shielding and Thermal Conductive Performances. Chem. Eng. J. 2020;380:122475. doi: 10.1016/j.cej.2019.122475. DOI
Hu L., Kang Z. Enhanced flexible polypropylene fabric with silver/magnetic carbon nanotubes coatings for electromagnetic interference shielding. Appl. Surf. Sci. 2021;568:150845. doi: 10.1016/j.apsusc.2021.150845. DOI
Ali N.N., Atassi Y., Salloum A., Charba A., Malki A., Jafarian M. Comparative Study of Microwave Absorption Characteristics of (Polyaniline/NiZn Ferrite) Nanocomposites with Different Ferrite Percentages. Mater. Chem. Phys. 2018;211:79–87. doi: 10.1016/j.matchemphys.2018.02.017. DOI
Gunasekaran S., Thanrasu K., Manikandan A., Durka M., Dinesh A., Anand S., Shankar S., Slimani Y., Almessiere M.A., Baykal A. Structural, Fabrication and Enhanced Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide (RGO)/Zirconium Substituted Cobalt Ferrite (Co0·5Zr0·5Fe2O4) Nanocomposites. Phys. B Condens. Matter. 2021;605:412784. doi: 10.1016/j.physb.2020.412784. DOI
Gahlout P., Choudhary V. EMI Shielding Response of Polypyrrole-MWCNT/Polyurethane Composites. Synth. Met. 2020;266:116414. doi: 10.1016/j.synthmet.2020.116414. DOI
Sulaiman J.M.A., Ismail M.M., Rafeeq S.N., Mandal A. Enhancement of Electromagnetic Interference Shielding Based on Co0.5Zn0.5Fe2O4/PANI-PTSA Nanocomposites. Appl. Phys. A. 2020;126:236. doi: 10.1007/s00339-020-3413-z. DOI
Shakir M.F., Tariq A., Rehan Z.A., Nawab Y., Abdul Rashid I., Afzal A., Hamid U., Raza F., Zubair K., Rizwan M.S., et al. Effect of Nickel-Spinal-Ferrites on EMI Shielding Properties of Polystyrene/Polyaniline Blend. SN Appl. Sci. 2020;2:706. doi: 10.1007/s42452-020-2535-4. DOI
Li X., Shu R., Wu Y., Zhang J., Wan Z. Fabrication of Nitrogen-Doped Reduced Graphene Oxide/Cobalt Ferrite Hybrid Nanocomposites as Broadband Electromagnetic Wave Absorbers in Both X and Ku Bands. Synth. Met. 2021;271:116621. doi: 10.1016/j.synthmet.2020.116621. DOI
Arief I., Biswas S., Bose S. Wool-Ball-Type Core-Dual-Shell FeCo@SiO2@MWCNTs Microcubes for Screening Electromagnetic Interference. ACS Appl. Nano Mater. 2018;1:2261–2271. doi: 10.1021/acsanm.8b00333. DOI
Luo J., Zuo Y., Shen P., Yan Z., Zhang K. Excellent Microwave Absorption Properties by Tuned Electromagnetic Parameters in Polyaniline-Coated Ba0.9La0.1Fe11.9Ni0.1O19/Reduced Graphene Oxide Nanocomposites. RSC Adv. 2017;7:36433–36443. doi: 10.1039/C7RA06800J. DOI
Verma M., Singh A.P., Sambyal P., Singh B.P., Dhawan S.K., Choudhary V. Barium Ferrite Decorated Reduced Graphene Oxide Nanocomposite for Effective Electromagnetic Interference Shielding. Phys. Chem. Chem. Phys. 2014;17:1610–1618. doi: 10.1039/C4CP04284K. PubMed DOI
Yin Y., Zeng M., Liu J., Tang W., Dong H., Xia R., Yu R. Enhanced High-Frequency Absorption of Anisotropic Fe3O4/Graphene Nanocomposites. Sci. Rep. 2016;6:25075. doi: 10.1038/srep25075. PubMed DOI PMC
Tang X.T., Wei G.T., Zhu T.X., Sheng L.M., An K., Yu L.M., Liu Y., Zhao X.L. Microwave Absorption Performance Enhanced by High-Crystalline Graphene and BaFe12O19 Nanocomposites. J. Appl. Phys. 2016;119:204301. doi: 10.1063/1.4951002. DOI
Sharma A.L., Thakur A.K. AC Conductivity and Relaxation Behavior in Ion Conducting Polymer Nanocomposite. Ionics. 2011;17:135–143. doi: 10.1007/s11581-010-0502-6. DOI
Yu H., Wang T., Wen B., Lu M., Xu Z., Zhu C., Chen Y., Xue X., Sun C., Cao M. Graphene/Polyaniline Nanorod Arrays: Synthesis and Excellent Electromagnetic Absorption Properties. J. Mater. Chem. 2012;22:21679–21685. doi: 10.1039/c2jm34273a. DOI
Zhou X., Chuai D., Zhu D. Electrospun Synthesis of Reduced Graphene Oxide (RGO)/NiZn Ferrite Nanocomposites for Excellent Microwave Absorption Properties. J. Supercond. Nov. Magn. 2019;32:2687–2697. doi: 10.1007/s10948-019-5039-y. DOI
Wang H., Zhang Z., Dong C., Chen G., Wang Y., Guan H. Carbon Spheres@MnO2 Core-Shell Nanocomposites with Enhanced Dielectric Properties for Electromagnetic Shielding. Sci. Rep. 2017;7:15841. doi: 10.1038/s41598-017-16059-0. PubMed DOI PMC
Wang F., Li X., Chen Z., Yu W., Loh K.P., Zhong B., Shi Y., Xu Q.H. Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem. Eng. J. 2021;405:126676. doi: 10.1016/j.cej.2020.126676. DOI
Rostami M., Majles Ara M.H. The Dielectric, Magnetic and Microwave Absorption Properties of Cu-Substituted Mg-Ni Spinel Ferrite-MWCNT Nanocomposites. Ceram. Int. 2019;45:7606–7613. doi: 10.1016/j.ceramint.2019.01.056. DOI
Cao M., Wang X., Cao W., Fang X., Wen B., Yuan J. Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion. Small. 2018;14:1800987. doi: 10.1002/smll.201800987. PubMed DOI
Liu P., Yao Z., Zhou J., Yang Z., Kong L.B. Small Magnetic Co-Doped NiZn Ferrite/Graphene Nanocomposites and Their Dual-Region Microwave Absorption Performance. J. Mater. Chem. C. 2016;4:9738–9749. doi: 10.1039/C6TC03518C. DOI
Guo J., Song H., Liu H., Luo C., Ren Y., Ding T., Khan M.A., Young D.P., Liu X., Zhang X., et al. Polypyrrole-Interface-Functionalized Nano-Magnetite Epoxy Nanocomposites as Electromagnetic Wave Absorbers with Enhanced Flame Retardancy. J. Mater. Chem. C. 2017;5:5334–5344. doi: 10.1039/C7TC01502J. DOI
Raju P., Shankar J., Anjaiah J., Kalyani C., Rani G.N. Complex Permittivity and Permeability Properties Analysis of NiCuZn Ferrite-Polymer Nanocomposites for EMI Suppressor Applications. J. Phys. Conf. Ser. 2020;1495:012001. doi: 10.1088/1742-6596/1495/1/012001. DOI
Mondal S., Ghosh S., Ganguly S., Das P., Ravindren R., Sit S., Chakraborty G., Das N.C. Highly Conductive and Flexible Nano-Structured Carbon-Based Polymer Nanocomposites with Improved Electromagnetic-Interference-Shielding Performance. Mater. Res. Express. 2017;4:105039. doi: 10.1088/2053-1591/aa9032. DOI
Bhingardive V., Sharma M., Suwas S., Madras G., Bose S. Polyvinylidene Fluoride Based Lightweight and Corrosion Resistant Electromagnetic Shielding Materials. RSC Adv. 2015;5:35909–35916. doi: 10.1039/C5RA05625J. DOI
Jiao Z., Yao Z., Zhou J., Qian K., Lei Y., Wei B., Chen W. Enhanced Microwave Absorption Properties of Nd-Doped NiZn Ferrite/Polyaniline Nanocomposites. Ceram. Int. 2020;46:25405–25414. doi: 10.1016/j.ceramint.2020.07.010. DOI
Shu R., Li W., Zhou X., Tian D., Zhang G., Gan Y., Shi J., He J. Facile Preparation and Microwave Absorption Properties of RGO/MWCNTs/ZnFe2O4 Hybrid Nanocomposites. J. Alloy. Compd. 2018;743:163–174. doi: 10.1016/j.jallcom.2018.02.016. DOI
Wu Y., Shu R., Li Z., Guo C., Zhang G., Zhang J., Li W. Design and Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide/Multi-Walled Carbon Nanotubes/Nickel Ferrite Ternary Nanocomposites. J. Alloy. Compd. 2019;784:887–896. doi: 10.1016/j.jallcom.2019.01.139. DOI
Liu W., Shao Q., Ji G., Liang X., Cheng Y., Quan B., Du Y. Metal–Organic-Frameworks Derived Porous Carbon-Wrapped Ni Composites with Optimized Impedance Matching as Excellent Lightweight Electromagnetic Wave Absorber. Chem. Eng. J. 2017;313:734–744. doi: 10.1016/j.cej.2016.12.117. DOI
Shen W., Ren B., Cai K., Song Y., Wang W. Synthesis of Nonstoichiometric Co0.8Fe2.2O4/Reduced Graphene Oxide (RGO) Nanocomposites and Their Excellent Electromagnetic Wave Absorption Property. J. Alloy. Compd. 2019;774:997–1008. doi: 10.1016/j.jallcom.2018.09.361. DOI
Gao S., An Q., Xiao Z., Zhai S., Shi Z. Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 2018;8:19011. doi: 10.1039/C8RA00913A. PubMed DOI PMC
Liu X., Zhao X., Yan J., Huang Y., Li T., Liu P. Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly(3,4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite. Carbon. 2021;178:273–284. doi: 10.1016/j.carbon.2021.03.042. DOI
Ma W., He P., Wang T., Xu J., Liu X., Zhuang Q., Cui Z.-K., Lin S. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021;420:129875. doi: 10.1016/j.cej.2021.129875. DOI
Xiong L., Yu M., Liu J., Li S., Xue B. Preparation and evaluation of the microwave absorption properties of template-free graphene foam-supported Ni nanoparticles. RSC Adv. 2017;7:14733. doi: 10.1039/C6RA27435H. DOI
Fang C., Zhang Z., Bing X., Lei Y. Preparation, Characterization and Electrochemical Performance of Graphene from Microcrystalline Graphite. J. Mater. Sci. Mater. Electron. 2017;28:19174–19180. doi: 10.1007/s10854-017-7876-4. DOI
Naghdi S., Jaleh B., Eslamipanah M., Moradi A., Abdollahi M., Einali N., Rhee K.Y. Graphene family, and their hybrid structures for electromagnetic interference shielding applications: Recent trends and prospects. J. Alloy. Compd. 2022;900:163176. doi: 10.1016/j.jallcom.2021.163176. DOI
Rasul M.G., Kiziltas A., Arfaei B., Shahbazian-Yassar R. 2D boron nitride nanosheets for polymer composite materials. NPJ 2D Mater. Appl. 2021;5:56. doi: 10.1038/s41699-021-00231-2. DOI
Bustamante-Torres M., Romero-Fierro D., Arcentales-Vera B., Pardo S., Bucio E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers. 2021;13:2998. doi: 10.3390/polym13172998. PubMed DOI PMC
Functional Nanomaterials and Polymer Nanocomposites: Current Uses and Potential Applications