Excellent, Lightweight and Flexible Electromagnetic Interference Shielding Nanocomposites Based on Polypropylene with MnFe2O4 Spinel Ferrite Nanoparticles and Reduced Graphene Oxide
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GA19-23647S
the Czech Science Foundation
DKRVO (RP/CPS/2020/006)
the Ministry of Education, Youth and Sports of the Czech Republic
IGA/CPS/2020/003
the internal grant for specific research from Tomas Bata University in Zlín
PubMed
33321997
PubMed Central
PMC7763453
DOI
10.3390/nano10122481
PII: nano10122481
Knihovny.cz E-resources
- Keywords
- dielectric loss, electromagnetic interference shielding, magnetic loss, nanocomposites, spinel ferrite,
- Publication type
- Journal Article MeSH
In this work, various tunable sized spinel ferrite MnFe2O4 nanoparticles (namely MF20, MF40, MF60 and MF80) with reduced graphene oxide (RGO) were embedded in a polypropylene (PP) matrix. The particle size and structural feature of magnetic filler MnFe2O4 nanoparticles were controlled by sonochemical synthesis time 20 min, 40 min, 60 min and 80 min. As a result, the electromagnetic interference shielding characteristics of developed nanocomposites MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP were also controlled by tuning of magnetic/dielectric loss. The maximum value of total shielding effectiveness (SET) was 71.3 dB for the MF80-RGO-PP nanocomposite sample with a thickness of 0.5 mm in the frequency range (8.2-12.4 GHz). This lightweight, flexible and thin nanocomposite sheet based on the appropriate size of MnFe2O4 nanoparticles with reduced graphene oxide demonstrates a high-performance advanced nanocomposite for cutting-edge electromagnetic interference shielding application.
See more in PubMed
Biswas S., Arief I., Panja S.S., Bose S. Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon. ACS Appl. Mater. Interfaces. 2017;9:3030–3039. doi: 10.1021/acsami.6b14853. PubMed DOI
Cao W.-T., Chen F.-F., Zhu Y.-J., Zhang Y.-G., Jiang Y.-Y., Ma M.-G., Chen F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano. 2018;12:4583–4593. doi: 10.1021/acsnano.8b00997. PubMed DOI
Zhang Y., Qiu M., Yu Y., Wen B., Cheng L. A Novel Polyaniline-Coated Bagasse Fiber Composite with Core-Shell Heterostructure Provides Effective Electromagnetic Shielding Performance. ACS Appl. Mater. Interfaces. 2017;9:809–818. doi: 10.1021/acsami.6b11989. PubMed DOI
Shen B., Li Y., Zhai W., Zheng W. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Appl. Mater. Interfaces. 2016;8:8050–8057. doi: 10.1021/acsami.5b11715. PubMed DOI
Hsiao S.-T., Ma C.-C.M., Tien H.-W., Liao W.-H., Wang Y.-S., Li S.-M., Yang C.-Y., Lin S.-C., Yang R.-B. Effect of Covalent Modification of Graphene Nanosheets on the Electrical Property and Electromagnetic Interference Shielding Performance of a Water-Borne Polyurethane Composite. ACS Appl. Mater. Interfaces. 2015;7:2817–2826. doi: 10.1021/am508069v. PubMed DOI
Wang H., Zhu D., Zhou W., Luo F. Effect of Multiwalled Carbon Nanotubes on the Electromagnetic Interference Shielding Properties of Polyimide/Carbonyl Iron Composites. Ind. Eng. Chem. Res. 2015;54:6589–6595. doi: 10.1021/acs.iecr.5b01182. DOI
Kim S., Oh J.-S., Kim M.-G., Jang W., Wang M., Kim Y., Seo H.-W., Kim Y.-C., Lee J.-H., Lee Y., et al. Electromagnetic Interference (EMI) Transparent Shielding of Reduced Graphene Oxide (RGO) Interleaved Structure Fabricated by Electrophoretic Deposition. ACS Appl. Mater. Interfaces. 2014;6:17647–17653. doi: 10.1021/am503893v. PubMed DOI
Liu P., Yao Z., Zhou J. Fabrication and microwave absorption of reduced graphene oxide/Ni0.4Zn0.4Co0.2 Fe2O4 nanocomposites. Ceram. Int. 2016;42:9241–9249. doi: 10.1016/j.ceramint.2016.03.026. DOI
Dippong T., Toloman D., Levei E.-A., Cadar O., Mesaros A. A possible formation mechanism and photocatalytic properties of CoFe2O4/ PVA-SiO2 nanocomposites. Thermochim. Acta. 2018;666:103–115. doi: 10.1016/j.tca.2018.05.021. DOI
Jazirehpour M., Ebrahimi S.S. Synthesis of magnetite nanostructures with complex morphologies and effect of these morphologies on magnetic and electromagnetic properties. Ceram. Int. 2016;42:16512–16520. doi: 10.1016/j.ceramint.2016.07.067. DOI
Yang Y., Li M., Wu Y., Zong B., Ding J. Size-dependent microwave absorption properties of Fe3O4 nanodiscs. RSC Adv. 2016;6:25444–25448. doi: 10.1039/C5RA28035D. DOI
Liang Y.-J., Fan F., Ma M., Sun J., Chen J., Zhang Y., Gu N. Size-dependent electromagnetic properties and the related simulations of Fe3O4 nanoparticles made by microwave-assisted thermal decomposition. Colloids Surf. A. 2017;530:191–199. doi: 10.1016/j.colsurfa.2017.06.059. DOI
Wu N., Liu X., Zhao C., Cui C., Xia A. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloy. Compd. 2016;656:628–634. doi: 10.1016/j.jallcom.2015.10.027. DOI
Yadav R.S., Kuřitka I., Vilcakova J., Machovsky M., Skoda D., Urbánek P., Masař M., Jurča M., Urbánek M., Kalina L., et al. NiFe2O4 Nanoparticles Synthesized by Dextrin from Corn-Mediated Sol-Gel Combustion Method and Its Polypropylene Nanocomposites Engineered with Reduced Graphene Oxide for the Reduction of Electromagnetic Pollution. ACS Omega. 2019;4:22069–22081. doi: 10.1021/acsomega.9b03191. PubMed DOI PMC
Yadav R.S., Kuřitka I., Vilcakova J., Jamatia T., Machovsky M., Skoda D., Urbánek P., Masař M., Urbánek M., Kalina L., et al. Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason. Sonochem. 2020;61:104839. doi: 10.1016/j.ultsonch.2019.104839. PubMed DOI
Bai Y., Rakhi R.B., Chen W., Alshareef H.N. Effect of pH induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance. J. Power Sources. 2013;233:313–319. doi: 10.1016/j.jpowsour.2013.01.122. DOI
Patade S.R., Andhare D.D., Somvanshi S.B., Jadhav S.A., Khedkar M.V., Jadhav K.M. Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 2020;46:25576–25583. doi: 10.1016/j.ceramint.2020.07.029. DOI
Hsiao M.-C., Liao S.-H., Lin Y.-F., Wang C.-A., Pu N.-W., Tsai H.-M., Ma C.-C.M. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite. Nanoscale. 2011;3:1516. doi: 10.1039/c0nr00981d. PubMed DOI
Yadav R.S., Kuritka I., Vilcáková J., Machovský M., Škoda D., Urbánek P., Masar M., Goralik M., Urbánek M., Kalina L., et al. Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Application. Nanomaterials. 2019;9:621. doi: 10.3390/nano9040621. PubMed DOI PMC
Varshney D., Verma K., Kumar A. Structural and vibrational properties of ZnxMn1-xFe2O4(x = 0.0, 0.25, 0.50, 0.75, 1.0) mixed ferrites. Mater. Chem. Phys. 2011;131:413–419. doi: 10.1016/j.matchemphys.2011.09.066. DOI
Gupta A., Jamatia R., Patil R.A., Ma Y.-R., Pal A.K. Copper Oxide/Reduced Graphene Oxide Nanocomposite-Catalyzed Synthesis of Flavanones and Flavanones with Triazole Hybrid Molecules in One Pot: A Green and Sustainable Approach. ACS Omega. 2018;3:7288–7299. doi: 10.1021/acsomega.8b00334. PubMed DOI PMC
Wadi V.S., Jena K.K., Halique K., Alhassan S.M. Enhanced Mechanical Toughness of Isotactic Polypropylene Using Bulk Molybdenum Disulfide. ACS Omega. 2020;5:11394–11401. doi: 10.1021/acsomega.0c00419. PubMed DOI PMC
Thakur A., Kumar P., Thakur P., Rana K., Chevalier A., Mattei J.-L., Queffélec P. Enhancement of magnetic properties of Ni0.5Zn0.5Fe2O4 nanoparticles prepared by the co-precipitation method. Ceram. Int. 2016;42:10664–10670. doi: 10.1016/j.ceramint.2016.03.173. DOI
Gopanna A., Mandapati R.N., Thomas S.P., Rajan K., Chavali M. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for qualitative and quantitative analysis. Polym. Bull. 2019;76:4259–4274. doi: 10.1007/s00289-018-2599-0. DOI
Hassan M.M., Koyama K. Enhanced thermal, mechanical and fire retarding properties of polystyrene sulphonate-grafted- nanosilica/polypropylene composites. RSC Adv. 2015;5:16950–16959. doi: 10.1039/C4RA15750H. DOI
He Q., Yuan T., Zhang X., Luo Z., Haldolaarachchige N., Sun L., Young D.P., Wei S., Guo Z. Magnetically Soft and Hard Polypropylene/Cobalt Nanocomposites: Role of Maleic Anhydride Grafted Polypropylene. Macromolecules. 2013;46:2357–2368. doi: 10.1021/ma4001397. DOI
Zhu J., Wei S., Li Y., Sun L., Haldolaarachchige N., Young D.P., Southworth C., Khasanov A., Luo Z., Guo Z. Surfactant-Free Synthesized Magnetic Polypropylene Nanocomposites: Rheological, Electrical, Magnetic, and Thermal Properties. Macromolecules. 2011;44:4382–4391. doi: 10.1021/ma102684f. DOI
Lv H., Liang X., Ji G., Zhang H., Du Y. Porous Three- Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties. ACS Appl. Mater. Interfaces. 2015;7:9776–9783. doi: 10.1021/acsami.5b01654. PubMed DOI
Manna K., Srivastava S.K. Fe3O4@Carbon@Polyaniline Trilaminar Core−Shell Composites as Superior Microwave Absorber in Shielding of Electromagnetic Pollution. ACS Sustain. Chem. Eng. 2017;5:10710–10721. doi: 10.1021/acssuschemeng.7b02682. DOI
Shahzad F., Kumar P., Kim Y.-H., Hong S.M., Koo C.M. Biomass-Derived Thermally Annealed Interconnected Sulfur-Doped Graphene as a Shield against Electromagnetic Interference. ACS Appl. Mater. Interfaces. 2016;8:9361–9369. doi: 10.1021/acsami.6b00418. PubMed DOI
Song W.-L., Gong C., Li H., Cheng X.-D., Chen M., Yuan X., Chen H., Yang Y., Fang D. Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding. ACS Appl. Mater. Interfaces. 2017;9:36119–36129. doi: 10.1021/acsami.7b08229. PubMed DOI
Zhang X.-J., Wang G.-S., Cao W.-Q., Wei Y.-Z., Liang J.-F., Guo L., Cao M.-S. Enhanced Microwave Absorption Property of Reduced Graphene Oxide (RGO)-MnFe2O4 Nanocomposites and Polyvinylidene Fluoride. ACS Appl. Mater. Interfaces. 2014;6:7471–7478. doi: 10.1021/am500862g. PubMed DOI
Yin P., Zhang L., Sun P., Wang J., Feng X., Zhang Y., Dai J., Tang Y. Apium-derived biochar loaded with MnFe2O4@C for excellent low frequency electromagnetic wave absorption. Ceram. Int. 2020;46:13641–13650. doi: 10.1016/j.ceramint.2020.02.150. DOI
Lakshmi R.V., Bera P., Chakradhar R.P.S., Choudhury B., Pawar S.P., Bose S., Nair R.U., Barshilia H.C. Enhanced microwave absorption properties of PMMA modified MnFe2O4-polyaniline nanocomposites. Phys. Chem. Chem. Phys. 2019;21:5068–5077. doi: 10.1039/C8CP06943C. PubMed DOI
Srivastava R.K., Xavier P., Gupta S.N., Kar G.N., Bose S., Sood A.K. Excellent Electromagnetic Interference Shielding by Graphene- MnFe2O4 -Multiwalled Carbon Nanotube Hybrids at Very Low Weight Percentage in Polymer Matrix. ChemistrySelect. 2016;1:5995–6003. doi: 10.1002/slct.201601302. DOI
Wang Y., Wu X., Zhang W., Huang S. One-pot synthesis of MnFe2O4 nanoparticles-decorated reduced graphene oxide for enhanced microwave absorption properties. Mater. Technol. 2017;32:32–37. doi: 10.1080/10667857.2015.1113364. DOI
Yin P., Zhang L., Wang J., Feng X., Zhao L., Rao H., Wang Y., Dai J. Preparation of SiO2- MnFe2O4 Composites via One-Pot Hydrothermal Synthesis Method and Microwave Absorption Investigation in S-Band. Molecules. 2019;24:2605. doi: 10.3390/molecules24142605. PubMed DOI PMC
Wang Y., Wu X., Zhang W., Huang S. Synthesis and electromagnetic absorption properties of Ag-coated reduced graphene oxide with MnFe2O4 particles. J. Magn. Magn. Mater. 2016;404:58–63. doi: 10.1016/j.jmmm.2015.12.028. DOI
Kashi S., Gupta R.K., Bhattacharya S.N., Varley R.J. Experimental and simulation study of effect of thickness on performance of (butylene adipate-co-terephthalate) and poly lactide nanocomposites incorporated with graphene as stand-alone electromagnetic interference shielding and metal-backed microwave absorbers. Compos. Sci. Technol. 2020;195:108186.
Sui M., Fu T., Sun X., Cui G., Lv X., Gu G. Unary and binary doping effect of M2+ (M=Mn, Co, Ni, Zn) substituted hollow Fe3O4 approach for enhancing microwave attenuation. Ceram. Int. 2018;44:17138–17146. doi: 10.1016/j.ceramint.2018.06.167. DOI
Sankaran S., Deshmukh K., Ahamed M.B., Pasha S.K.K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part A. 2018;114:49–71. doi: 10.1016/j.compositesa.2018.08.006. DOI
Mishra M., Singh A.P., Singh B.P., Singh V.N., Dhawan S.K. Conducting Ferrofluid: A High-performance Microwave Shielding Material. J. Mater. Chem. A. 2014;2:13159–13168. doi: 10.1039/C4TA01681E. DOI
Behera C., Choudhary R.N.P., Das P.R. Size dependent electrical and magnetic properties of mechanically-activated MnFe2O4 nanoferrite. Ceram. Int. 2015;41:13042–13054. doi: 10.1016/j.ceramint.2015.07.006. DOI
Lyu L., Wang F., Zhang X., Qiao J., Liu C., Liu J. CuNi alloy/ carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon. 2021;172:488–496. doi: 10.1016/j.carbon.2020.10.021. DOI
Wang Y., Guan H., Dong C., Xiao X., Du S., Wang Y. Reduced graphene oxide(RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 2016;42:936–942. doi: 10.1016/j.ceramint.2015.09.022. DOI
Yin Y., Zeng M., Liu J., Tang W., Dong H., Xia R., Yu R. Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites. Sci. Rep. 2016;6:25075. doi: 10.1038/srep25075. PubMed DOI PMC
Zhang H., Wang B., Feng A., Zhang N., Jia Z., Huang Z., Liu X., Wu G. Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B. 2019;167:167,690–699. doi: 10.1016/j.compositesb.2019.03.055. DOI
Guanglei Wu G., Jia Z., Zhou X., Nie G., Lv H. Interlayer controllable of hierarchical MWCNTs@C@FexOy cross-linked composite with wideband electromagnetic absorption performance. Compos. Part A. 2020;128:105687.
Jia Z., Gao Z., Feng A., Zhang Y., Zhang C., Nie G., Wang K., Wu G. Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. Part B. 2019;176:107246. doi: 10.1016/j.compositesb.2019.107246. DOI
Meng X.M., Zhang X.J., Lu C., Pan Y.F., Wang G.-S. Enhanced absorbing properties of three-phase composites based on a thermoplastic-ceramic matrix (BaTiO3+PVDF) and carbon black nanoparticles. J. Mater. Chem. 2014;2:18725–18730. doi: 10.1039/C4TA04493B. DOI
Zhao Z., Kou K., Wu H. 2-Methylimidazole-mediated hierarchical Co3O4/N-doped carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber. J. Colloid Interface Sci. 2020;574:1–10. doi: 10.1016/j.jcis.2020.04.037. PubMed DOI
Dong S., Hu P., Li X., Hong C., Zhang X., Han J. NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 2020;398:125588. doi: 10.1016/j.cej.2020.125588. DOI
Wang F., Li X., Chen Z., Yu W., Loh K.P., Zhong B., Shi Y., Xu Q.-H. Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem. Eng. J. 2021;405:126676. doi: 10.1016/j.cej.2020.126676. DOI
Shi X.-L., Cao M.-S., Yuan J., Fang X.-Y. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 2009;95:163108. doi: 10.1063/1.3250170. DOI
Sun X., He J., Li G., Tang J., Wang T., Guo Y., Xue H. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C. 2013;1:765. doi: 10.1039/C2TC00159D. DOI
Luo J., Shen P., Yao W., Jiang C., Xu J. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites. Nanoscale Res. Lett. 2016;11:141. doi: 10.1186/s11671-016-1340-x. PubMed DOI PMC
Ibrahim I.R., Matori K.A., Ismail I., Awang Z., Rusly S.N.A., Nazlan R., Idris F.M., Zulkimi M.M.M., Abdullah N.H., Mustaffa M.S., et al. A Study on Microwave Absorption Properties of Carbon Black and Ni0.6Zn0.4Fe2O4 Nanocomposites by Tuning the Matching-Absorbing Layer Structures. Sci. Rep. 2020;10:3135. doi: 10.1038/s41598-020-60107-1. PubMed DOI PMC
Hou Y., Cheng L., Zhang Y., Du X., Zhao Y., Yang Z. High temperature electromagnetic interference shielding of lightweight and flexible ZrC/SiC nanofiber mats. Chem. Eng. J. 2021;404:126521. doi: 10.1016/j.cej.2020.126521. DOI
Lai H., Li W., Xu L., Wang X., Jiao H., Fan Z., Lei Z., Yuan Y. Scalable fabrication of highly crosslinked conductive nanofibrous films and their applications in energy storage and electromagnetic interference shielding. Chem. Eng. J. 2020;400:125322. doi: 10.1016/j.cej.2020.125322. DOI
Gupta T.K., Singh B.P., Mathur R.B., Dhakate S.R. Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale. 2014;6:842. doi: 10.1039/C3NR04565J. PubMed DOI
Lv H., Zhang H., Zhao J., Ji G., Du Y. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016;9:1813–1822. doi: 10.1007/s12274-016-1074-1. DOI
Deng Y.D., Zheng Y., Zhang D., Han C., Cheng A., Shen J., Zeng G., Zhang H. A novel and facile-to-synthesize three-dimensional honeycomb-like nano-Fe3O4@C composite: Electromagnetic wave absorption with wide bandwidth. Carbon. 2020;169:118–128. doi: 10.1016/j.carbon.2020.05.021. DOI
Xu Z., Du Y., Liu D., Wang Y., Ma W., Wang Y., Xu P., Han X. Pea-like Fe/Fe3C Nanoparticles Embedded in Nitrogen-Doped Carbon Nanotubes with Tunable Dielectric/Magnetic Loss and Efficient Electromagnetic Absorption. ACS Appl. Mater. Interfaces. 2019;11:4268–4277. doi: 10.1021/acsami.8b19201. PubMed DOI
Dong S., Lyu Y., Li X., Chen J., Zhang X., Han J., Hu P. Construction of MnO nanoparticles anchored on SiC whiskers for superior electromagnetic wave absorption. J. Colloid Interface Sci. 2020;559:186–196. doi: 10.1016/j.jcis.2019.10.026. PubMed DOI
Zhang H.-B., Yan Q., Zheng W.-G., He Z., Yu Z.-Z. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2011;3:918–924. doi: 10.1021/am200021v. PubMed DOI
Zou H., Li S., Zhang L., Yan S., Wu H., Zhang S., Tian M. Determining factors for high performance silicone rubber microwave absorbing materials. J. Magn. Magn. Mater. 2011;323:1643–1651. doi: 10.1016/j.jmmm.2011.01.028. DOI