• This record comes from PubMed

Excellent, Lightweight and Flexible Electromagnetic Interference Shielding Nanocomposites Based on Polypropylene with MnFe2O4 Spinel Ferrite Nanoparticles and Reduced Graphene Oxide

. 2020 Dec 10 ; 10 (12) : . [epub] 20201210

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
GA19-23647S the Czech Science Foundation
DKRVO (RP/CPS/2020/006) the Ministry of Education, Youth and Sports of the Czech Republic
IGA/CPS/2020/003 the internal grant for specific research from Tomas Bata University in Zlín

In this work, various tunable sized spinel ferrite MnFe2O4 nanoparticles (namely MF20, MF40, MF60 and MF80) with reduced graphene oxide (RGO) were embedded in a polypropylene (PP) matrix. The particle size and structural feature of magnetic filler MnFe2O4 nanoparticles were controlled by sonochemical synthesis time 20 min, 40 min, 60 min and 80 min. As a result, the electromagnetic interference shielding characteristics of developed nanocomposites MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP were also controlled by tuning of magnetic/dielectric loss. The maximum value of total shielding effectiveness (SET) was 71.3 dB for the MF80-RGO-PP nanocomposite sample with a thickness of 0.5 mm in the frequency range (8.2-12.4 GHz). This lightweight, flexible and thin nanocomposite sheet based on the appropriate size of MnFe2O4 nanoparticles with reduced graphene oxide demonstrates a high-performance advanced nanocomposite for cutting-edge electromagnetic interference shielding application.

See more in PubMed

Biswas S., Arief I., Panja S.S., Bose S. Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon. ACS Appl. Mater. Interfaces. 2017;9:3030–3039. doi: 10.1021/acsami.6b14853. PubMed DOI

Cao W.-T., Chen F.-F., Zhu Y.-J., Zhang Y.-G., Jiang Y.-Y., Ma M.-G., Chen F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano. 2018;12:4583–4593. doi: 10.1021/acsnano.8b00997. PubMed DOI

Zhang Y., Qiu M., Yu Y., Wen B., Cheng L. A Novel Polyaniline-Coated Bagasse Fiber Composite with Core-Shell Heterostructure Provides Effective Electromagnetic Shielding Performance. ACS Appl. Mater. Interfaces. 2017;9:809–818. doi: 10.1021/acsami.6b11989. PubMed DOI

Shen B., Li Y., Zhai W., Zheng W. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Appl. Mater. Interfaces. 2016;8:8050–8057. doi: 10.1021/acsami.5b11715. PubMed DOI

Hsiao S.-T., Ma C.-C.M., Tien H.-W., Liao W.-H., Wang Y.-S., Li S.-M., Yang C.-Y., Lin S.-C., Yang R.-B. Effect of Covalent Modification of Graphene Nanosheets on the Electrical Property and Electromagnetic Interference Shielding Performance of a Water-Borne Polyurethane Composite. ACS Appl. Mater. Interfaces. 2015;7:2817–2826. doi: 10.1021/am508069v. PubMed DOI

Wang H., Zhu D., Zhou W., Luo F. Effect of Multiwalled Carbon Nanotubes on the Electromagnetic Interference Shielding Properties of Polyimide/Carbonyl Iron Composites. Ind. Eng. Chem. Res. 2015;54:6589–6595. doi: 10.1021/acs.iecr.5b01182. DOI

Kim S., Oh J.-S., Kim M.-G., Jang W., Wang M., Kim Y., Seo H.-W., Kim Y.-C., Lee J.-H., Lee Y., et al. Electromagnetic Interference (EMI) Transparent Shielding of Reduced Graphene Oxide (RGO) Interleaved Structure Fabricated by Electrophoretic Deposition. ACS Appl. Mater. Interfaces. 2014;6:17647–17653. doi: 10.1021/am503893v. PubMed DOI

Liu P., Yao Z., Zhou J. Fabrication and microwave absorption of reduced graphene oxide/Ni0.4Zn0.4Co0.2 Fe2O4 nanocomposites. Ceram. Int. 2016;42:9241–9249. doi: 10.1016/j.ceramint.2016.03.026. DOI

Dippong T., Toloman D., Levei E.-A., Cadar O., Mesaros A. A possible formation mechanism and photocatalytic properties of CoFe2O4/ PVA-SiO2 nanocomposites. Thermochim. Acta. 2018;666:103–115. doi: 10.1016/j.tca.2018.05.021. DOI

Jazirehpour M., Ebrahimi S.S. Synthesis of magnetite nanostructures with complex morphologies and effect of these morphologies on magnetic and electromagnetic properties. Ceram. Int. 2016;42:16512–16520. doi: 10.1016/j.ceramint.2016.07.067. DOI

Yang Y., Li M., Wu Y., Zong B., Ding J. Size-dependent microwave absorption properties of Fe3O4 nanodiscs. RSC Adv. 2016;6:25444–25448. doi: 10.1039/C5RA28035D. DOI

Liang Y.-J., Fan F., Ma M., Sun J., Chen J., Zhang Y., Gu N. Size-dependent electromagnetic properties and the related simulations of Fe3O4 nanoparticles made by microwave-assisted thermal decomposition. Colloids Surf. A. 2017;530:191–199. doi: 10.1016/j.colsurfa.2017.06.059. DOI

Wu N., Liu X., Zhao C., Cui C., Xia A. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloy. Compd. 2016;656:628–634. doi: 10.1016/j.jallcom.2015.10.027. DOI

Yadav R.S., Kuřitka I., Vilcakova J., Machovsky M., Skoda D., Urbánek P., Masař M., Jurča M., Urbánek M., Kalina L., et al. NiFe2O4 Nanoparticles Synthesized by Dextrin from Corn-Mediated Sol-Gel Combustion Method and Its Polypropylene Nanocomposites Engineered with Reduced Graphene Oxide for the Reduction of Electromagnetic Pollution. ACS Omega. 2019;4:22069–22081. doi: 10.1021/acsomega.9b03191. PubMed DOI PMC

Yadav R.S., Kuřitka I., Vilcakova J., Jamatia T., Machovsky M., Skoda D., Urbánek P., Masař M., Urbánek M., Kalina L., et al. Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason. Sonochem. 2020;61:104839. doi: 10.1016/j.ultsonch.2019.104839. PubMed DOI

Bai Y., Rakhi R.B., Chen W., Alshareef H.N. Effect of pH induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance. J. Power Sources. 2013;233:313–319. doi: 10.1016/j.jpowsour.2013.01.122. DOI

Patade S.R., Andhare D.D., Somvanshi S.B., Jadhav S.A., Khedkar M.V., Jadhav K.M. Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 2020;46:25576–25583. doi: 10.1016/j.ceramint.2020.07.029. DOI

Hsiao M.-C., Liao S.-H., Lin Y.-F., Wang C.-A., Pu N.-W., Tsai H.-M., Ma C.-C.M. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite. Nanoscale. 2011;3:1516. doi: 10.1039/c0nr00981d. PubMed DOI

Yadav R.S., Kuritka I., Vilcáková J., Machovský M., Škoda D., Urbánek P., Masar M., Goralik M., Urbánek M., Kalina L., et al. Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Application. Nanomaterials. 2019;9:621. doi: 10.3390/nano9040621. PubMed DOI PMC

Varshney D., Verma K., Kumar A. Structural and vibrational properties of ZnxMn1-xFe2O4(x = 0.0, 0.25, 0.50, 0.75, 1.0) mixed ferrites. Mater. Chem. Phys. 2011;131:413–419. doi: 10.1016/j.matchemphys.2011.09.066. DOI

Gupta A., Jamatia R., Patil R.A., Ma Y.-R., Pal A.K. Copper Oxide/Reduced Graphene Oxide Nanocomposite-Catalyzed Synthesis of Flavanones and Flavanones with Triazole Hybrid Molecules in One Pot: A Green and Sustainable Approach. ACS Omega. 2018;3:7288–7299. doi: 10.1021/acsomega.8b00334. PubMed DOI PMC

Wadi V.S., Jena K.K., Halique K., Alhassan S.M. Enhanced Mechanical Toughness of Isotactic Polypropylene Using Bulk Molybdenum Disulfide. ACS Omega. 2020;5:11394–11401. doi: 10.1021/acsomega.0c00419. PubMed DOI PMC

Thakur A., Kumar P., Thakur P., Rana K., Chevalier A., Mattei J.-L., Queffélec P. Enhancement of magnetic properties of Ni0.5Zn0.5Fe2O4 nanoparticles prepared by the co-precipitation method. Ceram. Int. 2016;42:10664–10670. doi: 10.1016/j.ceramint.2016.03.173. DOI

Gopanna A., Mandapati R.N., Thomas S.P., Rajan K., Chavali M. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for qualitative and quantitative analysis. Polym. Bull. 2019;76:4259–4274. doi: 10.1007/s00289-018-2599-0. DOI

Hassan M.M., Koyama K. Enhanced thermal, mechanical and fire retarding properties of polystyrene sulphonate-grafted- nanosilica/polypropylene composites. RSC Adv. 2015;5:16950–16959. doi: 10.1039/C4RA15750H. DOI

He Q., Yuan T., Zhang X., Luo Z., Haldolaarachchige N., Sun L., Young D.P., Wei S., Guo Z. Magnetically Soft and Hard Polypropylene/Cobalt Nanocomposites: Role of Maleic Anhydride Grafted Polypropylene. Macromolecules. 2013;46:2357–2368. doi: 10.1021/ma4001397. DOI

Zhu J., Wei S., Li Y., Sun L., Haldolaarachchige N., Young D.P., Southworth C., Khasanov A., Luo Z., Guo Z. Surfactant-Free Synthesized Magnetic Polypropylene Nanocomposites: Rheological, Electrical, Magnetic, and Thermal Properties. Macromolecules. 2011;44:4382–4391. doi: 10.1021/ma102684f. DOI

Lv H., Liang X., Ji G., Zhang H., Du Y. Porous Three- Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties. ACS Appl. Mater. Interfaces. 2015;7:9776–9783. doi: 10.1021/acsami.5b01654. PubMed DOI

Manna K., Srivastava S.K. Fe3O4@Carbon@Polyaniline Trilaminar Core−Shell Composites as Superior Microwave Absorber in Shielding of Electromagnetic Pollution. ACS Sustain. Chem. Eng. 2017;5:10710–10721. doi: 10.1021/acssuschemeng.7b02682. DOI

Shahzad F., Kumar P., Kim Y.-H., Hong S.M., Koo C.M. Biomass-Derived Thermally Annealed Interconnected Sulfur-Doped Graphene as a Shield against Electromagnetic Interference. ACS Appl. Mater. Interfaces. 2016;8:9361–9369. doi: 10.1021/acsami.6b00418. PubMed DOI

Song W.-L., Gong C., Li H., Cheng X.-D., Chen M., Yuan X., Chen H., Yang Y., Fang D. Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding. ACS Appl. Mater. Interfaces. 2017;9:36119–36129. doi: 10.1021/acsami.7b08229. PubMed DOI

Zhang X.-J., Wang G.-S., Cao W.-Q., Wei Y.-Z., Liang J.-F., Guo L., Cao M.-S. Enhanced Microwave Absorption Property of Reduced Graphene Oxide (RGO)-MnFe2O4 Nanocomposites and Polyvinylidene Fluoride. ACS Appl. Mater. Interfaces. 2014;6:7471–7478. doi: 10.1021/am500862g. PubMed DOI

Yin P., Zhang L., Sun P., Wang J., Feng X., Zhang Y., Dai J., Tang Y. Apium-derived biochar loaded with MnFe2O4@C for excellent low frequency electromagnetic wave absorption. Ceram. Int. 2020;46:13641–13650. doi: 10.1016/j.ceramint.2020.02.150. DOI

Lakshmi R.V., Bera P., Chakradhar R.P.S., Choudhury B., Pawar S.P., Bose S., Nair R.U., Barshilia H.C. Enhanced microwave absorption properties of PMMA modified MnFe2O4-polyaniline nanocomposites. Phys. Chem. Chem. Phys. 2019;21:5068–5077. doi: 10.1039/C8CP06943C. PubMed DOI

Srivastava R.K., Xavier P., Gupta S.N., Kar G.N., Bose S., Sood A.K. Excellent Electromagnetic Interference Shielding by Graphene- MnFe2O4 -Multiwalled Carbon Nanotube Hybrids at Very Low Weight Percentage in Polymer Matrix. ChemistrySelect. 2016;1:5995–6003. doi: 10.1002/slct.201601302. DOI

Wang Y., Wu X., Zhang W., Huang S. One-pot synthesis of MnFe2O4 nanoparticles-decorated reduced graphene oxide for enhanced microwave absorption properties. Mater. Technol. 2017;32:32–37. doi: 10.1080/10667857.2015.1113364. DOI

Yin P., Zhang L., Wang J., Feng X., Zhao L., Rao H., Wang Y., Dai J. Preparation of SiO2- MnFe2O4 Composites via One-Pot Hydrothermal Synthesis Method and Microwave Absorption Investigation in S-Band. Molecules. 2019;24:2605. doi: 10.3390/molecules24142605. PubMed DOI PMC

Wang Y., Wu X., Zhang W., Huang S. Synthesis and electromagnetic absorption properties of Ag-coated reduced graphene oxide with MnFe2O4 particles. J. Magn. Magn. Mater. 2016;404:58–63. doi: 10.1016/j.jmmm.2015.12.028. DOI

Kashi S., Gupta R.K., Bhattacharya S.N., Varley R.J. Experimental and simulation study of effect of thickness on performance of (butylene adipate-co-terephthalate) and poly lactide nanocomposites incorporated with graphene as stand-alone electromagnetic interference shielding and metal-backed microwave absorbers. Compos. Sci. Technol. 2020;195:108186.

Sui M., Fu T., Sun X., Cui G., Lv X., Gu G. Unary and binary doping effect of M2+ (M=Mn, Co, Ni, Zn) substituted hollow Fe3O4 approach for enhancing microwave attenuation. Ceram. Int. 2018;44:17138–17146. doi: 10.1016/j.ceramint.2018.06.167. DOI

Sankaran S., Deshmukh K., Ahamed M.B., Pasha S.K.K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part A. 2018;114:49–71. doi: 10.1016/j.compositesa.2018.08.006. DOI

Mishra M., Singh A.P., Singh B.P., Singh V.N., Dhawan S.K. Conducting Ferrofluid: A High-performance Microwave Shielding Material. J. Mater. Chem. A. 2014;2:13159–13168. doi: 10.1039/C4TA01681E. DOI

Behera C., Choudhary R.N.P., Das P.R. Size dependent electrical and magnetic properties of mechanically-activated MnFe2O4 nanoferrite. Ceram. Int. 2015;41:13042–13054. doi: 10.1016/j.ceramint.2015.07.006. DOI

Lyu L., Wang F., Zhang X., Qiao J., Liu C., Liu J. CuNi alloy/ carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon. 2021;172:488–496. doi: 10.1016/j.carbon.2020.10.021. DOI

Wang Y., Guan H., Dong C., Xiao X., Du S., Wang Y. Reduced graphene oxide(RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 2016;42:936–942. doi: 10.1016/j.ceramint.2015.09.022. DOI

Yin Y., Zeng M., Liu J., Tang W., Dong H., Xia R., Yu R. Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites. Sci. Rep. 2016;6:25075. doi: 10.1038/srep25075. PubMed DOI PMC

Zhang H., Wang B., Feng A., Zhang N., Jia Z., Huang Z., Liu X., Wu G. Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B. 2019;167:167,690–699. doi: 10.1016/j.compositesb.2019.03.055. DOI

Guanglei Wu G., Jia Z., Zhou X., Nie G., Lv H. Interlayer controllable of hierarchical MWCNTs@C@FexOy cross-linked composite with wideband electromagnetic absorption performance. Compos. Part A. 2020;128:105687.

Jia Z., Gao Z., Feng A., Zhang Y., Zhang C., Nie G., Wang K., Wu G. Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. Part B. 2019;176:107246. doi: 10.1016/j.compositesb.2019.107246. DOI

Meng X.M., Zhang X.J., Lu C., Pan Y.F., Wang G.-S. Enhanced absorbing properties of three-phase composites based on a thermoplastic-ceramic matrix (BaTiO3+PVDF) and carbon black nanoparticles. J. Mater. Chem. 2014;2:18725–18730. doi: 10.1039/C4TA04493B. DOI

Zhao Z., Kou K., Wu H. 2-Methylimidazole-mediated hierarchical Co3O4/N-doped carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber. J. Colloid Interface Sci. 2020;574:1–10. doi: 10.1016/j.jcis.2020.04.037. PubMed DOI

Dong S., Hu P., Li X., Hong C., Zhang X., Han J. NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 2020;398:125588. doi: 10.1016/j.cej.2020.125588. DOI

Wang F., Li X., Chen Z., Yu W., Loh K.P., Zhong B., Shi Y., Xu Q.-H. Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem. Eng. J. 2021;405:126676. doi: 10.1016/j.cej.2020.126676. DOI

Shi X.-L., Cao M.-S., Yuan J., Fang X.-Y. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 2009;95:163108. doi: 10.1063/1.3250170. DOI

Sun X., He J., Li G., Tang J., Wang T., Guo Y., Xue H. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C. 2013;1:765. doi: 10.1039/C2TC00159D. DOI

Luo J., Shen P., Yao W., Jiang C., Xu J. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites. Nanoscale Res. Lett. 2016;11:141. doi: 10.1186/s11671-016-1340-x. PubMed DOI PMC

Ibrahim I.R., Matori K.A., Ismail I., Awang Z., Rusly S.N.A., Nazlan R., Idris F.M., Zulkimi M.M.M., Abdullah N.H., Mustaffa M.S., et al. A Study on Microwave Absorption Properties of Carbon Black and Ni0.6Zn0.4Fe2O4 Nanocomposites by Tuning the Matching-Absorbing Layer Structures. Sci. Rep. 2020;10:3135. doi: 10.1038/s41598-020-60107-1. PubMed DOI PMC

Hou Y., Cheng L., Zhang Y., Du X., Zhao Y., Yang Z. High temperature electromagnetic interference shielding of lightweight and flexible ZrC/SiC nanofiber mats. Chem. Eng. J. 2021;404:126521. doi: 10.1016/j.cej.2020.126521. DOI

Lai H., Li W., Xu L., Wang X., Jiao H., Fan Z., Lei Z., Yuan Y. Scalable fabrication of highly crosslinked conductive nanofibrous films and their applications in energy storage and electromagnetic interference shielding. Chem. Eng. J. 2020;400:125322. doi: 10.1016/j.cej.2020.125322. DOI

Gupta T.K., Singh B.P., Mathur R.B., Dhakate S.R. Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale. 2014;6:842. doi: 10.1039/C3NR04565J. PubMed DOI

Lv H., Zhang H., Zhao J., Ji G., Du Y. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016;9:1813–1822. doi: 10.1007/s12274-016-1074-1. DOI

Deng Y.D., Zheng Y., Zhang D., Han C., Cheng A., Shen J., Zeng G., Zhang H. A novel and facile-to-synthesize three-dimensional honeycomb-like nano-Fe3O4@C composite: Electromagnetic wave absorption with wide bandwidth. Carbon. 2020;169:118–128. doi: 10.1016/j.carbon.2020.05.021. DOI

Xu Z., Du Y., Liu D., Wang Y., Ma W., Wang Y., Xu P., Han X. Pea-like Fe/Fe3C Nanoparticles Embedded in Nitrogen-Doped Carbon Nanotubes with Tunable Dielectric/Magnetic Loss and Efficient Electromagnetic Absorption. ACS Appl. Mater. Interfaces. 2019;11:4268–4277. doi: 10.1021/acsami.8b19201. PubMed DOI

Dong S., Lyu Y., Li X., Chen J., Zhang X., Han J., Hu P. Construction of MnO nanoparticles anchored on SiC whiskers for superior electromagnetic wave absorption. J. Colloid Interface Sci. 2020;559:186–196. doi: 10.1016/j.jcis.2019.10.026. PubMed DOI

Zhang H.-B., Yan Q., Zheng W.-G., He Z., Yu Z.-Z. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2011;3:918–924. doi: 10.1021/am200021v. PubMed DOI

Zou H., Li S., Zhang L., Yan S., Wu H., Zhang S., Tian M. Determining factors for high performance silicone rubber microwave absorbing materials. J. Magn. Magn. Mater. 2011;323:1643–1651. doi: 10.1016/j.jmmm.2011.01.028. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...