Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Application
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NPU I (LO1504)
Ministerstvo Školství, Mládeže a Tělovýchovy
IGA/CPS/2019/007
Internal Grant Agency at Tomas Bata University (TBU) in Zlin, Czech Republic
PubMed
30995813
PubMed Central
PMC6523113
DOI
10.3390/nano9040621
PII: nano9040621
Knihovny.cz E-resources
- Keywords
- electrical properties, electromagnetic interference shielding, nanoparticles, polymer-matrix composites,
- Publication type
- Journal Article MeSH
Herein, we presented electromagnetic interference shielding characteristics of NiFe2O4 nanoparticles-in-situ thermally-reduced graphene oxide (RGO)-polypropylene nanocomposites with the variation of reduced graphene oxide content. The structural, morphological, magnetic, and electromagnetic parameters and mechanical characteristics of fabricated nanocomposites were investigated and studied in detail. The controllable composition of NiFe2O4-RGO-Polypropylene nanocomposites exhibited electromagnetic interference (EMI) shielding effectiveness (SE) with a value of 29.4 dB at a thickness of 2 mm. The enhanced EMI shielding properties of nanocomposites with the increase of RGO content could be assigned to enhanced attenuation ability, high conductivity, dipole and interfacial polarization, eddy current loss, and natural resonance. The fabricated lightweight NiFe2O4-RGO-Polypropylene nanocomposites have potential as a high performance electromagnetic interference shielding nanocomposite.
Faculty of Technology Tomas Bata University in Zlín Vavrečkova 275 760 01 Zlín Czech Republic
Materials Research Centre Brno University of Technology Purkyňova 464 118 61200 Brno Czech Republic
See more in PubMed
Wang H., Zhang Z., Dong C., Chen G., Wang Y., Guan H. Carbon spheres@MnO2 coreshell nanocomposites with enhanced dielectric properties for electromagnetic shielding. Sci. Rep. 2017;7:15841. doi: 10.1038/s41598-017-16059-0. PubMed DOI PMC
Han Y., Lin J., Liu Y., Fu H., Ma Y., Jin P., Tan J. Crackle template based metallic mesh with highly homogeneous light transmission for high performance transparent EMI shielding. Sci. Rep. 2016;6:25601. doi: 10.1038/srep25601. PubMed DOI PMC
Song W.L., Gong C., Li H., Cheng X.D., Chen M., Yuan X., Chen H., Yang Y., Fang D. Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding. ACS Appl. Mater. Interfaces. 2017;9:36119–36129. doi: 10.1021/acsami.7b08229. PubMed DOI
Hu Q., Qi X., Cai H., Xie R., Long L., Bai Z., Jiang Y., Qin S., Zhong W., Du Y. Preparation of porous Fe2O3 nanorods-reduced graphene oxide nanohybrids and their excellent microwave absorption properties. Sci. Rep. 2017;7:11213. doi: 10.1038/s41598-017-11131-1. PubMed DOI PMC
Zhang Y., Rhee K.Y., Park S.-J. Nanodiamond nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability. Compos. Part B. 2017;114:111–120. doi: 10.1016/j.compositesb.2017.01.051. DOI
Zhang Y., Rhee K.Y., Hui D., Park S.-J. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Compos. Part B. 2018;143:19–27. doi: 10.1016/j.compositesb.2018.01.028. DOI
Hsiao S.T., Ma C.C., Liao W.H., Wang Y.S., Li S.M., Huang Y.C., Yang R.B., Liang W.F. Lightweight and Flexible Reduced Graphene Oxide/Water-Borne Polyurethane Composites with High Electrical Conductivity and Excellent Electromagnetic Interference Shielding Performance. ACS Appl. Mater. Interfaces. 2014;6:10667–10678. doi: 10.1021/am502412q. PubMed DOI
Qi X., Yang E., Cai H., Xie R., Bai Z., Jiang Y., Qin S., Zhong W., Du Y. Water-assisted and controllable synthesis of core/shell/shell structured carbon-based nanohybrids, and their magnetic and microwave absorption properties. Sci. Rep. 2017;7:9851. doi: 10.1038/s41598-017-10352-8. PubMed DOI PMC
George G., Simon S.M., Prakashan V.P., Sajna M.S., Faisal M., Wilson R., Chandran A., Biju P.R., Joseph C., Unnikrishnan N.V. Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties. RSC Adv. 2018;8:30412. doi: 10.1039/C8RA05007D. DOI
Ameli A., Nofar M., Wang S., Park C.B. Lightweight Polypropylene/Stainless-Steel Fiber Composite Foams with Low Percolation for Efficient Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2014;6:11091–11100. doi: 10.1021/am500445g. PubMed DOI
Ameli A., Jung P.U., Park C.B. Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon. 2013;60:379–391. doi: 10.1016/j.carbon.2013.04.050. DOI
Hong M.S., Choi W.K., An K.H., Kang S.J., Park S.J., Lee Y.S., Kim B.J. Electromagnetic interference shielding behaviors of carbon fibers-reinforced polypropylene matrix composites: II. Effects of filler length control. J. Ind. Eng. Chem. 2014;20:3901–3904. doi: 10.1016/j.jiec.2013.12.096. DOI
Biswas S., Panja S.S., Bose S. Tailored distribution of nanoparticles in bi-phasic polymeric blends as emerging materials for suppressing electromagnetic radiation: Challenges and prospects. J. Mater. Chem. C. 2018;6:3120–3142. doi: 10.1039/C8TC00002F. DOI
Pawar S.P., Gandi M., Bose S. High performance electromagnetic wave absorbers derived from PC/SAN blends containing multiwall carbon nanotubes and Fe3O4 decorated onto graphene oxide sheets. RSC Adv. 2016;6:37633–37645. doi: 10.1039/C5RA25435C. DOI
Gupta A., Singh A.P., Varshney S., Agrawal N., Sambyal P., Pandey Y., Singh B.P., Singh V.N., Gupta B.K., Dhawan S.K. New insight into the shape-controlled synthesis and microwave shielding properties of iron oxide covered with reduced graphene oxide. RSC Adv. 2014;4:62413–62422. doi: 10.1039/C4RA10417J. DOI
Zhang Y., Wang X., Cao M. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018;11:1426–1436. doi: 10.1007/s12274-017-1758-1. DOI
Liu P., Huang Y., Zhang X. Cubic NiFe2O4 particles on graphene–polyaniline and their enhanced microwave absorption properties. Compos. Sci. Technol. 2015;107:54–60. doi: 10.1016/j.compscitech.2014.11.021. DOI
Ren F., Shi Y., Ren P., Si X., Wang H. Cyanate Ester Resin Filled with Graphene Nanosheets and NiFe2O4-Reduced Graphene Oxide Nanohybrids for Efficient Electromagnetic Interference Shielding. Nano Brief Rep. Rev. 2017;12:750066. doi: 10.1142/S1793292017500667. DOI
He J.-Z., Wang X.-X., Zhang Y.-L., Cao M.-S. Small magnetic nanoparticles decorating reduced graphene oxides to tune electromagnetic attenuation capacity. J. Mater. Chem. C. 2016;4:7130–7140. doi: 10.1039/C6TC02020H. DOI
Sabet M., Jahangiri H., Ghashghaei E. Synthesis of carbon nanotube, graphene, CoFe2O4, and NiFe2O4 polypyrrole nanocomposites and study their microwave absorption. J. Mater. Sci. Mater. Electron. 2018;29:10853–10863. doi: 10.1007/s10854-018-9156-3. DOI
Bateer B., Zhang J., Zhang H., Zhang X., Wang C., Qi H. Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band. J. Electron. Mater. 2018;47:292–298. doi: 10.1007/s11664-017-5756-6. DOI
Wang Y., Zhang W., Luo C., Wu X., Wang Q., Chen W., Li J. Synthesis, characterization and enhanced electromagnetic properties of NiFe2O4@SiO2-decorated reduced graphene oxide nanosheets. Ceram. Int. 2016;42:17374–17381. doi: 10.1016/j.ceramint.2016.08.036. DOI
Yan J., Huang Y., Chen X., Wei C. Conducting polymers-NiFe2O4 coated on reduced graphene oxide sheets as electromagnetic (EM) wave absorption materials. Synth. Met. 2016;221:291–298. doi: 10.1016/j.synthmet.2016.09.018. DOI
Liu P., Huang Y., Sun X. NiFe2O4 clusters on the surface of reduced graphene oxide and their excellent microwave absorption properties. Mater. Lett. 2013;112:117–120. doi: 10.1016/j.matlet.2013.08.126. DOI
Yadav R.S., Kuřitka I., Vilcakova J., Skoda D., Urbánek P., Machovsky M., Masař M., Kalina L., Havlica J. Lightweight NiFe2O4-Reduced Graphene Oxide-Elastomer Nanocomposite Flexible Sheet for Electromagnetic Interference Shielding Application. Compos. Part B Eng. 2019;166:95–111. doi: 10.1016/j.compositesb.2018.11.069. DOI
Yadav R.S., Havlica J., Masilko J., Kalina L., Wasserbauer J., Hajdúchová M., Enev V., Kuřitka I., Kožáková Z. Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. J. Magn. Magn. Mater. 2015;394:439–447. doi: 10.1016/j.jmmm.2015.07.012. DOI
Nazim S., Kousar T., Shahid M., Khan M.A., Nasar G., Sher M., Warsi M.F. New graphene-CoxZn1-xFe2O4 nano-heterostructures: Magnetically separable visible light photocatalytic materials. Ceram. Int. 2016;42:7647–7654. doi: 10.1016/j.ceramint.2016.01.177. DOI
Yang H., Yu Z., Wu P., Zou H., Liu P. Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites. Appl. Surface Sci. 2018;434:318–325. doi: 10.1016/j.apsusc.2017.10.191. DOI
Bhawal P., Ganguly S., Das T.K., Mondal S., Choudhury S., Das N.C. Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites. Compos. Part B. 2018;134:46–60. doi: 10.1016/j.compositesb.2017.09.046. DOI
Bagotia N., Choudhary V., Sharma D.K. Superior electrical, mechanical and electromagnetic interference shielding properties of polycarbonate/ethylene-methyl acrylate-in situ reduced graphene oxide nanocomposites. J. Mater. Sci. 2018;53:16047–16061. doi: 10.1007/s10853-018-2749-7. DOI
Glover A.J., Cai M., Overdeep K.R., Kranbuehl D.E., Schniepp H.C. In Situ Reduction of Graphene Oxide in Polymers. Macromolecules. 2011;44:9821–9829. doi: 10.1021/ma2008783. DOI
Karakaş Z.K., Boncukçuoğlu R., Karakaş İ.H. The effects of fuel type in synthesis of NiFe2O4 nanoparticles by microwave assisted combustion method. J. Phys. Conf. Ser. 2016;707:012046. doi: 10.1088/1742-6596/707/1/012046. DOI
Hsiao M.C., Liao S.H., Lin Y.F., Wang C.A., Pu N.W., Tsai H.M., Ma C.C. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite. Nanoscale. 2011;3:1516–1522. doi: 10.1039/c0nr00981d. PubMed DOI
Wang D., Zhang X., Zha J.-W., Zhao J., Dang Z.-M., Hu G.-H. Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer. 2013;54:1916–1922. doi: 10.1016/j.polymer.2013.02.012. DOI
Xu J., Gai S., He F., Niu N., Gao P., Chen Y., Yang P. Reduced graphene oxide/Ni1−xCoxAl-layered double hydroxide composites: Preparation and high supercapacitor performance. Dalton Trans. 2014;43:11667–11675. doi: 10.1039/C4DT00686K. PubMed DOI
Zhu J., Wei S., Patil R., Rutman D., Kucknoor A.S., Wang A., Guo Z. Ionic liquid assisted electrospinning of quantum dots/elastomer composite Nanofibers. Polymer. 2011;52:1954–1962. doi: 10.1016/j.polymer.2011.02.051. DOI
Jang J., Lee D.K. Oxygen barrier properties of biaxially oriented polypropylene/polyvinyl alcohol blend films. Polymer. 2004;45:1599–1607. doi: 10.1016/j.polymer.2003.12.046. DOI
Zong M., Huang Y., Zhang N., Wu H. Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites. J. Alloys Compd. 2015;644:491–501. doi: 10.1016/j.jallcom.2015.05.073. DOI
Kuila T., Bose S., Khanra P., Mishra A.K., Kim N.H., Lee J.H. A green approach for the reduction of graphene oxide by wild carrot root. Carbon. 2012;50:914–921. doi: 10.1016/j.carbon.2011.09.053. DOI
Anupama M.K., Srinatha N., Matteppanavar S., Angadi B., Sahoo B., Rudraswamy B. Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceram. Int. 2018;44:4946–4954. doi: 10.1016/j.ceramint.2017.12.087. DOI
Chavan A.R., Kounsalye J.S., Chilwar R.R., Kale S.B., Jadhav K.M. Cu2+ substituted NiFe2O4 thin films via spray pyrolysis technique and their high-frequency devices application. J. Alloys Compd. 2018;769:1132–1145. doi: 10.1016/j.jallcom.2018.08.061. DOI
Al-Ghamdi A.A., Al-Hazmi F.S., Memesh L.S., Shokr F.S., Bronstein L.M. Effect of mechanochemical synthesis on the structure, magnetic and optical behavior of Ni1-xZnxFe2O4 spinel ferrites. Ceram. Int. 2017;43:6192–6200. doi: 10.1016/j.ceramint.2017.02.017. DOI
Ding Y., Liao Q., Liu S., Guo H., Sun Y., Zhang G., Zhang Y. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption. Sci. Rep. 2016;6:32381. doi: 10.1038/srep32381. PubMed DOI PMC
Khurana G., Kumar N., Kotnala R.K., Nautiyal T., Katiyar R.S. Temperature tuned defect induced magnetism in reduced graphene oxide. Nanoscale. 2013;5:3346. doi: 10.1039/c3nr34291c. PubMed DOI
Ahmad S.R., Young R.J., Kinloch I.A. Raman Spectra and Mechanical Properties of Graphene/Polypropylene Nanocomposites. Int. J. Chem. Eng. Appl. 2015;6:1–5.
Nikolaeva G.Y., Sagitova E.A., Prokhorov K.A., Pashinin P.P., Nedorezova P.M., Klyamkina A.N., Guseva M.A., Gerasin V.A. Using Raman spectroscopy to determine the structure of copolymers and polymer blends. J. Phys. Conf. Ser. 2017;826:012002. doi: 10.1088/1742-6596/826/1/012002. DOI
Yadav R.S., Kuřitka I., Vilcakova J., Havlica J., Masilko J., Kalina L., Tkacz J., Enev V., Hajdúchová M. Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids. 2017;107:150–161. doi: 10.1016/j.jpcs.2017.04.004. DOI
Aghavniana T., Moussy J.-B., Stanescu D., Belkhou R., Jedrecy N., Magnan H., Ohresser P., Arrio M.-A., Sainctavit P., Barbier A. Determination of the cation site distribution of the spinel in multiferroic CoFe2O4/BaTiO3 layers by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2015;202:16–21. doi: 10.1016/j.elspec.2015.02.006. DOI
Yadav R.S., Kuřitka I., Vilcakova J., Havlica J., Kalina L., Urbánek P., Machovsky M., Skoda D., Masař M., Holek M. Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties. Ultrason. Sonochem. 2018;40:773–783. doi: 10.1016/j.ultsonch.2017.08.024. PubMed DOI
Wang D.W., Du A., Taran E., Lu G.Q., Gentle I.R. A water-dielectric capacitor using hydrated graphene oxide film. J. Mater. Chem. 2012;22:21085–21091. doi: 10.1039/c2jm34476a. DOI
Zhao S., Yan Y., Gao A., Zhao S., Cui J., Zhang G. Flexible Polydimethylsilane Nanocomposites Enhanced with a Three-Dimensional Graphene/Carbon Nanotube Bicontinuous Framework for High-Performance Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2018;10:26723–26732. doi: 10.1021/acsami.8b09275. PubMed DOI
Manna K., Srivastava S.K. Contrasting Role of Defect-Induced Carbon Nanotubes in Electromagnetic Interference Shielding. J. Phys. Chem. C. 2018;122:19913–19920. doi: 10.1021/acs.jpcc.8b04813. DOI
Cao W.T., Chen F.F., Zhu Y.J., Zhang Y.G., Jiang Y.Y., Ma M.G., Chen F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano. 2018;12:4583–4593. doi: 10.1021/acsnano.8b00997. PubMed DOI
Biswas S., Arief I., Panja S.S., Bose S. Electromagnetic screening in soft conducting composite-containing ferrites: The key role of size and shape anisotropy. Mater. Chem. Front. 2017;1:2574–2589. doi: 10.1039/C7QM00305F. DOI
Verma M., Singh A.P., Sambyal P., Singh B.P., Dhawan S.K., Choudhary V. Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Phys. Chem. Chem. Phys. 2015;17:1610. doi: 10.1039/C4CP04284K. PubMed DOI
Pawar S.P., Stephen S., Bose S., Mittal V. Tailored electrical conductivity, electromagnetic shielding and thermal transport in polymeric blends with graphene sheets decorated with nickel nanoparticles. Phys. Chem. Chem. Phys. 2015;17:14922–14930. doi: 10.1039/C5CP00899A. PubMed DOI
Saini P., Choudhary V., Vijayan N., Kotnala R.K. Improved Electromagnetic Interference Shielding Response of Poly(aniline)-Coated Fabrics Containing Dielectric and Magnetic Nanoparticles. J. Phys. Chem. C. 2012;116:13403–13412. doi: 10.1021/jp302131w. DOI
Chen Y., Li Y., Yip M., Tai N. Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles. Compos. Sci. Technol. 2013;80:80–86. doi: 10.1016/j.compscitech.2013.02.024. DOI
Yang Y., Gupta M.C. Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding. Nano Lett. 2005;5:2131–2134. doi: 10.1021/nl051375r. PubMed DOI
Ramírez-Herrera C.A., Gonzalez H., de la Torre F., Benitez L., Cabañas-Moreno J.G., Lozano K. Electrical Properties and Electromagnetic Interference Shielding Effectiveness of Interlayered Systems Composed by Carbon Nanotube Filled Carbon Nanofiber Mats and Polymer Composites. Nanomaterials. 2019;9:238. doi: 10.3390/nano9020238. PubMed DOI PMC
Mishra M., Singh A.P., Singh B.P., Singh V.N., Dhawan S.K. Conducting ferrofluid: A high-performance microwave shielding material. J. Mater. Chem. A. 2014;2:13159–13168. doi: 10.1039/C4TA01681E. DOI
Shao Y., Li J., Lu W., Xiao J.Q., Qiu Y., Chou T.-W. Microbuckling-Enhanced Electromagnetic-Wave-Absorbing Capability of a Stretchable Fe3O4/Carbon Nanotube/Poly(dimethylsiloxane) Composite Film. ACS Appl. Nano Mater. 2018;1:2227–2236. doi: 10.1021/acsanm.8b00297. DOI
Chen Y., Zhang A., Ding L., Liu Y., Lu H. A three-dimensional absorber hybrid with polar oxygen functional groups of MWNTs/graphene with enhanced microwave absorbing properties. Compos. Part B. 2017;108:386–392. doi: 10.1016/j.compositesb.2016.10.014. DOI
Li N., Huang G.W., Li Y.Q., Xiao H.M., Feng Q.P., Hu N., Fu S.Y. Enhanced Microwave Absorption Performance of Coated Carbon Nanotubes by Optimizing the Fe3O4 Nanocoating Structure. ACS Appl. Mater. Interfaces. 2017;9:2973–2983. doi: 10.1021/acsami.6b13142. PubMed DOI
Chen C.Y., Pu N.W., Liu Y.M., Chen L.H., Wu C.H., Cheng T.Y., Lin M.H., Ger M.D., Gong Y.J., Peng Y.Y., Grubb P.M. Microwave absorption properties of holey graphene/silicone rubber composites. Compos. Part B. 2018;135:119–128. doi: 10.1016/j.compositesb.2017.10.001. DOI
Reshi H.A., Singh A.P., Pillai S., Yadav R.S., Dhawan S.K., Shelke V. Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range. J. Mater. Chem. C. 2015;3:820–827. doi: 10.1039/C4TC02040E. DOI
Luo J., Zuo Y., Shen P., Yan Z., Zhang K. Excellent microwave absorption properties by tuned electromagnetic parameters in polyaniline coated Ba0.9La0.1Fe11.9Ni0.1O19/reduced graphene oxide nanocomposites. RSC Adv. 2017;7:36433–36443. doi: 10.1039/C7RA06800J. DOI
Pan H., Xu M., Qi Q., Liu X. Facile preparation and excellent microwave absorption properties of an RGO/Co0.33Ni0.67 lightweight absorber. RSC Adv. 2017;7:43831–43838. doi: 10.1039/C7RA06849B. DOI
Wang Y., Wang W., Zhu M., Yu D. Electromagnetic wave absorption polyimide fabric prepared by coating with core-shell NiFe2O4@ PANI nanoparticles. RSC Adv. 2017;7:42891–42899. doi: 10.1039/C7RA08002F. DOI
Wan Y.-J., Zhu P.-L., Yu S.-H., Sun R., Wong C.-P., Liao W.-H. Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon. 2017;122:74–81. doi: 10.1016/j.carbon.2017.06.042. DOI
Yu L., Zhu Y., Fu Y. Flexible composite film of aligned polyaniline grown on the surface of magnetic barium titanate/polyvinylidene fluoride for exceptional microwave absorption performance. RSC Adv. 2017;7:36473–36481. doi: 10.1039/C7RA05744J. PubMed DOI PMC
Bora P.J., Azeem I., Vinoy K.J., Ramamurthy P.C., Madras G. Morphology controllable microwave absorption property of polyvinylbutyral (PVB)-MnO2 nanocomposites. Compos. Part B. 2018;132:188–196. doi: 10.1016/j.compositesb.2017.09.014. DOI
Zhu J., Zhang X., Wang S., Wang G., Yin P. Enhanced Microwave Absorption Material of Ternary Nanocomposites Based on MnFe2O4@SiO2. Polyaniline Polyvinylidene Fluoride RSC Adv. 2016;6:88104–88109. doi: 10.1039/C6RA17076E. DOI
Lv H., Ji G., Xiao H.L., Zhang H., Du Y. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C. 2015;3:5056–5064. doi: 10.1039/C5TC00525F. DOI
Xu W., Wang G.-S., Yin P.-G. Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon. 2018;139:759–767. doi: 10.1016/j.carbon.2018.07.044. DOI
Quan B., Liang X., Ji G., Lv J., Dai S.S., Xu G., Du Y. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon. 2018;129:310–320. doi: 10.1016/j.carbon.2017.12.026. DOI
Crespo M., Mendez N., Gonzalez M., Baselga J., Pozuelo J. Synergistic effect of magnetite nanoparticles and carbon nanofibres in electromagnetic absorbing composites. Carbon. 2014;74:63–72. doi: 10.1016/j.carbon.2014.02.082. DOI
Xu F., Chen R., Lin Z., Qin Y., Yuan Y., Li Y., Zhao X., Yang M., Sun X., Wang S., et al. Superflexible Interconnected Graphene Network Nanocomposites for High-Performance Electromagnetic Interference Shielding. ACS Omega. 2018;3:3599–3607. doi: 10.1021/acsomega.8b00432. PubMed DOI PMC
Ahmad A.F., Aziz S.A., Abbas Z., Obaiys S.J., Khamis A.M., Hussain I.R., Zaid M.H.M. Preparation of a Chemically Reduced Graphene Oxide Reinforced Epoxy Resin Polymer as a Composite for Electromagnetic Interference Shielding and Microwave-Absorbing Applications. Polymers. 2018;10:1180. doi: 10.3390/polym10111180. PubMed DOI PMC
Wen B., Cao M., Lu M., Cao W., Shi H., Liu J., Wang X., Jin H., Fang X., Wang W., et al. Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures. Adv. Mater. 2014;26:3484–3489. doi: 10.1002/adma.201400108. PubMed DOI