The Free Radical Scavenger N-Tert-Butyl-α-Phenylnitrone (PBN) Administered to Immature Rats During Status Epilepticus Alters Neurogenesis and Has Variable Effects, Both Beneficial and Detrimental, on Long-Term Outcomes
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
30210297
PubMed Central
PMC6121067
DOI
10.3389/fncel.2018.00266
Knihovny.cz E-resources
- Keywords
- adult neurogenesis, epilepsy, epileptic comorbidities, free radical scavenger, juvenile rats, neuroprotection,
- Publication type
- Journal Article MeSH
Status epilepticus (SE), especially in immature animals, is known to produce recurrent spontaneous seizures and behavioral comorbidities later in life. The cause of these adverse long-term outcomes is unknown, but it has been hypothesized that free radicals produced by SE may play a role. We tested this hypothesis by treating immature (P25) rats with the free radical scavenger N-tert-butyl-α-phenylnitrone (PBN) at the time of lithium chloride (LiCl)/pilocarpine (PILO)-induced SE. Later, long-term outcomes were assessed. Cognitive impairment (spatial memory) was tested in the Morris water maze (MWM). Emotional disturbances were assessed by the capture test (aggressiveness) and elevated plus maze's (EPM) test (anxiety). Next, the presence and severity of spontaneous seizures were assessed by continuous video/EEG monitoring for 5 days. Finally, immunochemistry, stereology and morphology were used to assess the effects of PBN on hippocampal neuropathology and neurogenesis. PBN treatment modified the long-term effects of SE in varying ways, some beneficial and some detrimental. Beneficially, PBN protected against severe anatomical damage in the hippocampus and associated spatial memory impairment. Detrimentally, PBN treated animals had more severe seizures later in life. PBN also made animals more aggressive and more anxious. Correlating with these detrimental long-term outcomes, PBN significantly modified post-natal neurogenesis. Treated animals had significantly increased numbers of mature granule cells (GCs) ectopically located in the dentate hilus (DH). These results raise the possibility that abnormal neurogenesis may significantly contribute to the development of post-SE epilepsy and behavioral comorbidities.
See more in PubMed
Block F., Schwarz M. (1997). Correlation between hippocampal neuronal damage and spatial learning deficit due to global ischemia. Pharmacol. Biochem. Behav 56, 755–761. 10.1016/s0091-3057(96)00484-4 PubMed DOI
Broadbent N. J., Squire L. R., Clark R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proc. Natl. Acad. Sci. U S A 101, 14515–14520. 10.1073/pnas.0406344101 PubMed DOI PMC
Bruce A. J., Baudry M. (1995). Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic. Biol. Med 18, 993–1002. 10.1016/0891-5849(94)00218-9 PubMed DOI
Buckmaster P. S., Dudek F. E. (1997). Neuronal loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J. Comp. Neurol. 385, 385–404. 10.1002/(sici)1096-9861(19970901)385:3<385::aid-cne4>3.3.co;2-y PubMed DOI
Cho K. O., Lybrand Z. R., Ito N., Brulet R., Tafacory F., Zhang L., et al. . (2015). Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat. Commun. 6:6606. 10.1038/ncomms7606 PubMed DOI PMC
Detour J., Schroeder H., Desor D., Nehlig A. (2005). A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium-pilocarpine model in adult rats. Epilepsia 46, 499–508. 10.1111/j.0013-9580.2005.38704.x PubMed DOI
Dorph-Petersen K. A., Nyengaard J. R., Gundersen H. J. (2001). Tissue shrinkage and unbiased stereological estimation of particle number and size. J. Microsc. 204, 232–246. 10.1046/j.1365-2818.2001.00958.x PubMed DOI
Folbergrová J., Druga R., Otáhal J., Haugvicová R., Mareš P., Kubová H. (2006). Effect of free radical spin trap N-tert-butyl-α-phenylnitrone (PBN) on seizures induced in immature rats by homocysteic acid. Exp. Neurol. 201, 105–119. 10.1016/j.expneurol.2006.03.031 PubMed DOI
Folbergrová J., He Q. P., Li P. A., Smith M. L., Siesjö B. K. (1999). The effect of α-phenyl-N-tert-butyl nitrone on bioenergetic state in substantia nigra following flurothyl-induced status epilepticus in rats. Neurosci. Lett. 266, 121–124. 10.1016/s0304-3940(99)00279-7 PubMed DOI
Folbergrová J., Ješina P., Kubová H., Druga R., Otáhal J. (2016). Status epilepticus in immature rats is associated with oxidative stress and mitochondrial dysfunction. Front. Cell. Neurosci 10:136. 10.3389/fncel.2016.00136 PubMed DOI PMC
Gundersen H. J., Bendtsen T. F., Korbo L., Marcussen N., Møller A., Nielsen K., et al. . (1988). Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96, 379–394. 10.1111/j.1699-0463.1988.tb05320.x PubMed DOI
Hattiangady B., Rao M. S., Shetty A. K. (2004). Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol. Dis. 17, 473–490. 10.1016/j.nbd.2004.08.008 PubMed DOI
Hattiangady B., Shetty A. K. (2008). Implications of decreased hippocampal neurogenesis in chronic temporal lobe epilepsy. Epilepsia 49, 26–41. 10.1111/j.1528-1167.2008.01635.x PubMed DOI PMC
He Q. P., Smith M. L., Li P. A., Siesjö B. K. (1997). Necrosis of the substantia nigra, pars reticulata, in flurothyl-induced status epilepticus is ameliorated by the spin trap α phenyl-N-tert-butyl nitrone. Free Radic. Biol. Med 22, 917–922. 10.1016/s0891-5849(96)00478-9 PubMed DOI
Hensley K., Carney J. M., Stewart C. A., Tabatabaie T., Pye Q., Floyd R. A. (1997). Nitrone-based free radical traps as neuroprotective agents in cerebral ischaemia and other pathologies. Int. Rev. Neurobiol 40, 299–317. 10.1016/s0074-7742(08)60725-4 PubMed DOI
Hester M. S., Danzer S. C. (2014). Hippocampal granule cell pathology in epilepsy—a possible structural basis for comorbidities of epilepsy? Epilepsy Behav. 38, 105–116. 10.1016/j.yebeh.2013.12.022 PubMed DOI PMC
Hosford B. E., Liska J. P., Danzer S. C. (2016). Ablation of newly generated hippocampal granule cells has disease-modifying effects in epilepsy. J. Neurosci. 36, 11013–11023. 10.1523/JNEUROSCI.1371-16.2016 PubMed DOI PMC
Huang X., McMahon J., Huang Y. (2012). Rapamycin attenuates aggressive behavior in a rat model of pilocarpine-induced epilepsy. Neuroscience 215, 90–97. 10.1016/j.neuroscience.2012.04.011 PubMed DOI PMC
Iyengar S. S., LaFrancois J. J., Friedman D., Drew L. J., Denny C. A., Burghardt N. S., et al. . (2015). Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp. Neurol. 264, 135–149. 10.1016/j.expneurol.2014.11.009 PubMed DOI PMC
Jakubs K., Nanobashvili A., Bonde S., Ekdahl C. T., Kokaia Z., Kokaia M., et al. . (2006). Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron 52, 1047–1059. 10.1016/j.neuron.2006.11.004 PubMed DOI
Jessberger S., Zhao C., Toni N., Clemenson G. D., Jr., Li Y., Gage F. H. (2007). Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J. Neurosci. 27, 9400–9407. 10.1523/jneurosci.2002-07.2007 PubMed DOI PMC
Jung K. H., Chu K., Kim M., Jeong S. W., Song Y. M., Lee S. T., et al. . (2004). Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur. J. Neurosci. 19, 3219–3226. 10.1111/j.0953-816x.2004.03412.x PubMed DOI
Jung K. H., Chu K., Lee S. T., Kim J., Sinn D. I., Kim J. M., et al. . (2006). Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol. Dis. 23, 237–246. 10.1016/j.nbd.2006.02.016 PubMed DOI
Kotake Y. (1999). Pharmacologic properties of phenyl N-tert-butylnitrone. Antioxid Redox. Signal 1, 481–499. 10.1089/ars.1999.1.4-481 PubMed DOI
Kubová H., Mareš P. (2013). Are morphologic and functional consequences of status epilepticus in infant rats progressive? Neuroscience 235, 232–249. 10.1016/j.neuroscience.2012.12.055 PubMed DOI
Kubová H., Mareš P., Suchomelová L., Brožek G., Druga R., Pitkänen A. (2004). Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur. J. Neurosci. 19, 3255–3265. 10.1111/j.0953-816x.2004.03410.x PubMed DOI
Kubová H., Rejchrtová J., Redkozubova O., Mareš P. (2005). An outcome of status epilepticus in immature rats varies according to the paraldehyde treatment. Epilepsia 46, 38–42. 10.1111/j.1528-1167.2005.01005.x PubMed DOI
Liu S., Wang J., Zhu D., Fu Y., Lukowiak K., Lu Y. M. (2003). Generation of functional inhibitory neurons in the adult rat hippocampus. J. Neurosci. 23, 732–736. 10.1523/JNEUROSCI.23-03-00732.2003 PubMed DOI PMC
Lothman E. W., Bertram E. H., III. (1993). Epileptogenic effects of status epilepticus. Epilepsia 34, S59–S70. 10.1111/j.1528-1157.1993.tb05907.x PubMed DOI
Lowenstein D. H. (1996). Recent advances related to basic mechanisms of epileptogenesis. Epilepsy Res. Suppl. 11, 45–60. 10.1016/b978-012373961-2.00107-7 PubMed DOI
Maia G. H., Quesado J. L., Soares J. I., do Carmo J. M., Andrade P. A., Andrade J. P., et al. . (2014). Loss of hippocampal neurons after kainate treatment correlates with behavioral deficits. PLoS One 9:e84722. 10.1371/journal.pone.0084722 PubMed DOI PMC
Majak K., Pitkänen A. (2004). Do seizures cause irreversible cognitive damage? Evidence from animal studies. Epilepsy Behav. 5, S35–S44. 10.1016/j.yebeh.2003.11.012 PubMed DOI
Malberg J. E., Duman R. S. (2003). Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28, 1562–1571. 10.1038/sj.npp.1300234 PubMed DOI
Malberg J. E., Eisch A. J., Nestler E. J., Duman R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110. 10.1523/jneurosci.20-24-09104.2000 PubMed DOI PMC
McCloskey D. P., Hintz T. M., Pierce J. P., Scharfman H. E. (2006). Stereological methods reveal the robust size and stability of ectopic hilar granule cells after pilocarpine-induced status epilepticus in the adult rat. Eur. J. Neurosci. 24, 2203–2210. 10.1111/j.1460-9568.2006.05101.x PubMed DOI PMC
McElroy P. B., Liang L. P., Day B. J., Patel M. (2017). Scavenging reactive oxygen species inhibits status epilepticus-induced neuroinflammation. Exp. Neurol. 298, 13–22. 10.1016/j.expneurol.2017.08.009 PubMed DOI PMC
Myers C. E., Bermudez-Hernandez K., Scharfman H. E. (2013). The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS One 8:e68208. 10.1371/journal.pone.0068208 PubMed DOI PMC
Nairismägi J., Pitkänen A., Kettunen M. I., Kauppinen R. A., Kubová H. (2006). Status epilepticus in 12-day-old rats leads to temporal lobe neurodegeneration and volume reduction: a histologic and MRI study. Epilepsia 47, 479–488. 10.1111/j.1528-1167.2006.00455.x PubMed DOI
Nissinen J., Halonen T., Koivisto E., Pitkänen A. (2000). A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res. 38, 177–205. 10.1016/s0920-1211(99)00088-1 PubMed DOI
Nitecka L., Tremblay E., Charton G., Bouillot J. P., Berger M. L., Ben-Ari Y. (1984). Maturation of kainic acid seizure-brain damage syndrome in the rat: II. Histopathological sequelae. Neuroscience 13, 1073–1094. 10.1016/0306-4522(84)90289-6 PubMed DOI
Parent J. M., Elliott R. C., Pleasure S. J., Barbaro N. M., Lowenstein D. H. (2006). Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann. Neurol. 59, 81–91. 10.1002/ana.20699 PubMed DOI
Patel M., Li Q. Y. (2003). Age dependence of seizure-induced oxidative stress. Neuroscience 118, 431–437. 10.1016/s0306-4522(02)00979-x PubMed DOI
Pauletti A., Terrone G., Shekh-Ahmad T., Salamone A., Ravizza T., Rizzi M., et al. . (2017). Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 140, 1885–1899. 10.1093/brain/awx117 PubMed DOI PMC
Paxinos G., Watson C. (1986). The Rat Brain in Stereotaxic Coordinates. New York, NY: Academic Press.
Pearson J. N., Rowley S., Liang L. P., White A. M., Day B. J., Patel M. (2015). Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy. Neurobiol. Dis. 82, 289–297. 10.1016/j.nbd.2015.07.005 PubMed DOI PMC
Pekcec A., Fuest C., Mühlenhoff M., Gerardy-Schahn R., Potschka H. (2008). Targeting epileptogenesis-associated induction of neurogenesis by enzymatic depolysialylation of NCAM counteracts spatial learning dysfunction but fails to impact epilepsy development. J. Neurochem. 105, 389–400. 10.1111/j.1471-4159.2007.05172.x PubMed DOI
Peterson S. L., Purvis R. S., Griffith J. W. (2005). Comparison of neuroprotective effects induced by α-phenyl-N-tert-butyl nitrone (PBN) and N-tert-butyl-α-(2 sulfophenyl) nitrone (S-PBN) in lithium-pilocarpine status epilepticus. Neurotoxicology 26, 969–979. 10.1016/j.neuro.2005.04.002 PubMed DOI
Pinel J. P., Treit D., Rovner L. I. (1977). Temporal lobe aggression in rats. Science 197, 1088–1089. 10.1126/science.560719 PubMed DOI
Pitkänen A., Kubová H. (2004). Antiepileptic drugs in neuroprotection. Expert Opin. Pharmacother. 5, 777–798. 10.1517/eoph.5.4.777.30162 PubMed DOI
Pitkänen A., Nissinen J., Nairismägi J., Lukasiuk K., Gröhn O. H., Miettinen R., et al. . (2002). Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy. Prog. Brain Res. 135, 67–83. 10.1016/s0079-6123(02)35008-8 PubMed DOI
Racine R. J. (1972). Modification of seizure activity by electrical stimulation: II. Motor seizures. Electroenceph. Clin. Neurophysiol 32, 281–294. 10.10.1016/0013-4694(72)90177-0 PubMed DOI
Rao M. S., Shetty A. K. (2004). Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur. J. Neurosci. 19, 234–246. 10.1111/j.0953-816x.2003.03123.x PubMed DOI
Rejchrtová J., Kubová H., Druga R., Mareš P., Folbergrová J. (2005). Effects of a free radical scavenger N-tert-butyl-α-phenylnitrone (PBN) on short-term recovery of immature rats after status epilepticus. Physiol. Res. 54, 215–227. PubMed
Sankar R., Shin D. H., Liu H., Mazarati A., Pereira de Vasconcelos A., Wasterlain C. G. (1998). Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J. Neurosci. 18, 8382–8393. 10.1523/jneurosci.18-20-08382.1998 PubMed DOI PMC
Scharfman H. E., Goodman J., McCloskey D. (2007). Ectopic granule cells of the rat dentate gyrus. Dev. Neurosci. 29, 14–27. 10.1159/000096208 PubMed DOI PMC
Scharfman H. E., Sollas A. E., Berger R. E., Goodman J. H., Pierce J. P. (2003). Perforant path activation of ectopic granule cells that are born after pilocarpine-induced seizures. Neuroscience 121, 1017–1029. 10.1016/s0306-4522(03)00481-0 PubMed DOI
Sloviter R. S. (1992). Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci. Lett. 137, 91–96. 10.1016/0304-3940(92)90306-r PubMed DOI
Torii M.-A., Matsuzaki F., Osumi N., Kaibuchi K., Nakamura S., Casarosa S., et al. . (1999). Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 126, 443–456. PubMed
Tuunanen J., Halonen T., Pitkänen A. (1996). Status epilepticus causes selective regional damage and loss of GABAergic neurons in the rat amygdaloid complex. Eur. J. Neurosci. 8, 2711–2725. 10.1111/j.1460-9568.1996.tb01566.x PubMed DOI
Ueda Y., Yokoyama H., Nakajima A., Tokumaru J., Doi T., Mitsuyama Y. (2002). Glutamate excess and free radical formation during and following kainic acid-induced status epilepticus. Exp. Brain Res. 147, 219–226. 10.1007/s00221-002-1224-4 PubMed DOI
Wasterlain C. G., Fujikawa D. G., Penix L., Sankar R. (1993). Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 34, S37–S53. 10.1111/j.1528-1157.1993.tb05905.x PubMed DOI
Wasterlain C. G., Shirasaka Y., Mazarati A. M., Spigelman I. (1996). Chronic epilepsy with damage restricted to the hippocampus: possible mechanisms. Epilepsy Res. 26, 255–265. 10.1016/s0920-1211(96)00058-7 PubMed DOI
West M. J., Slomianka L., Gundersen H. J. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat. Rec. 231, 482–497. 10.1002/ar.1092310411 PubMed DOI
Wood J. C., Jackson J. S., Jakubs K., Chapman K. Z., Ekdahl C. T., Kokaia Z., et al. . (2011). Functional integration of new hippocampal neurons following insults to the adult brain is determined by characteristics of pathological environment. Exp. Neurol. 229, 484–493. 10.1016/j.expneurol.2011.03.019 PubMed DOI
Zhang X., Cui S. S., Wallace A. E., Hannesson D. K., Schmued L. C., Saucier D. M., et al. . (2002). Relations between brain pathology and temporal lobe epilepsy. J. Neurosci. 22, 6052–6061. 10.1523/JNEUROSCI.22-14-06052.2002 PubMed DOI PMC