The Telomerase Complex Directly Controls Hematopoietic Stem Cell Differentiation and Senescence in an Induced Pluripotent Stem Cell Model of Telomeropathy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30210531
PubMed Central
PMC6123533
DOI
10.3389/fgene.2018.00345
Knihovny.cz E-zdroje
- Klíčová slova
- dyskeratosis congenita, hematopoiesis, iPSC, immune function, immunosenescence, myelopoiesis, telomerase imbalance,
- Publikační typ
- časopisecké články MeSH
Telomeropathies are rare disorders associated with impaired telomere length control mechanisms that frequently result from genetic mutations in the telomerase complex. Dyskeratosis congenita is a congenital progressive telomeropathy in which mutation in the telomerase RNA component (TERC) impairs telomere maintenance leading to accelerated cellular senescence and clinical outcomes resembling premature aging. The most severe clinical feature is perturbed hematopoiesis and bone-marrow failure, but the underlying mechanisms are not fully understood. Here, we developed a model of telomerase function imbalance using shRNA to knockdown TERC expression in human induced pluripotent stem cells (iPSCs). We then promoted in vitro hematopoiesis in these cells to analyze the effects of TERC impairment. Reduced TERC expression impaired hematopoietic stem-cell (HSC) differentiation and increased the expression of cellular senescence markers and production of reactive oxygen species. Interestingly, telomere length was unaffected in shTERC knockdown iPSCs, leading to conclusion that the phenotype is controlled by non-telomeric functions of telomerase. We then assessed the effects of TERC-depletion in THP-1 myeloid cells and again observed reduced hematopoietic and myelopoietic differentiative potential. However, these cells exhibited impaired telomerase activity as verified by accelerated telomere shortening. shTERC-depleted iPSC-derived and THP-1-derived myeloid precursors had lower phagocytic capacity and increased ROS production, indicative of senescence. These findings were confirmed using a BIBR1532 TERT inhibitor, suggesting that these phenotypes are dependent on telomerase function but not directly linked to telomere length. These data provide a better understanding of the molecular processes driving the clinical signs of telomeropathies and identify novel roles of the telomerase complex other than regulating telomere length.
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Pediatric Hematology and Oncology The University Hospital Brno Brno Czechia
Zobrazit více v PubMed
Agarwal S., Loh Y. H., McLoughlin E. M., Huang J., Park I. H., Miller J. D., et al. (2010). Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464 292–296. 10.1038/nature08792 PubMed DOI PMC
Akbar A. N., Vukmanovic-Stejic M. (2007). Telomerase in T lymphocytes: use it and lose it? J. Immunol. 178 6689–6694. 10.4049/jimmunol.178.11.6689 PubMed DOI
Akiyama M., Asai O., Kuraishi Y., Urashima M., Hoshi Y., Sakamaki H., et al. (2000). Shortening of telomeres in recipients of both autologous and allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 25 441–447. 10.1038/sj.bmt.1702144 PubMed DOI
Alcaraz-Perez F., Garcia-Castillo J., Garcia-Moreno D., Lopez-Munoz A., Anchelin M., Angosto D., et al. (2014). A non-canonical function of telomerase RNA in the regulation of developmental myelopoiesis in zebrafish. Nat. Commun. 5:3228. 10.1038/ncomms4228 PubMed DOI
Armanios M., Alder J. K., Parry E. M., Karim B., Strong M. A., Greider C. W. (2009). Short telomeres are sufficient to cause the degenerative defects associated with aging. Am. J. Hum. Genet. 85 823–832. 10.1016/j.ajhg.2009.10.028 PubMed DOI PMC
Armanios M., Blackburn E. H. (2012). The telomere syndromes. Nat. Rev. Genet. 13 693–704. 10.1038/nrg3246 PubMed DOI PMC
Armstrong L., Saretzki G., Peters H., Wappler I., Evans J., Hole N., et al. (2005). Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells 23 516–529. 10.1634/stemcells.2004-0269 PubMed DOI
Baerlocher G. M., Rovo A., Muller A., Matthey S., Stern M., Halter J., et al. (2009). Cellular senescence of white blood cells in very long-term survivors after allogeneic hematopoietic stem cell transplantation: the role of chronic graft-versus-host disease and female donor sex. Blood 114 219–222. 10.1182/blood-2009-03-209833 PubMed DOI
Balakumaran A., Mishra P. J., Pawelczyk E., Yoshizawa S., Sworder B. J., Cherman N., et al. (2015). Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders. Blood 125 793–802. 10.1182/blood-2014-06-566810 PubMed DOI PMC
Ballew B. J., Savage S. A. (2013). Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Exp. Rev. Hematol. 6 327–337. 10.1586/ehm.13.23 PubMed DOI
Barbaro P., Vedi A. (2016). Survival after hematopoietic stem cell transplant in patients with dyskeratosis congenita: systematic review of the literature. Biol. Blood Marrow Transpl. 22 1152–1158. 10.1016/j.bbmt.2016.03.001 PubMed DOI
Batista L. F., Pech M. F., Zhong F. L., Nguyen H. N., Xie K. T., Zaug A. J., et al. (2011). Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474 399–402. 10.1038/nature10084 PubMed DOI PMC
Bhattacharjee R. N., Banerjee B., Akira S., Hande M. P. (2010). Telomere-mediated chromosomal instability triggers TLR4 induced inflammation and death in mice. PLoS One 5:e11873. 10.1371/journal.pone.0011873 PubMed DOI PMC
Blackburn E. H. (1991). Structure and function of telomeres. Nature 350 569–573. 10.1038/350569a0 PubMed DOI
Blackburn E. H. (2001). Switching and signaling at the telomere. Cell 106 661–673. 10.1016/S0092-8674(01)00492-5 PubMed DOI
Blasco M. A., Lee H. W., Hande M. P., Samper E., Lansdorp P. M., DePinho R. A., et al. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91 25–34. 10.1016/S0092-8674(01)80006-4 PubMed DOI
Buendia P., Carracedo J., Soriano S., Madueno J. A., Ortiz A., Martin-Malo A., et al. (2015). Klotho prevents NFkappaB translocation and protects endothelial cell from senescence induced by uremia. J. Gerontol. A Biol. Sci. Med. Sci. 70 1198–1209. 10.1093/gerona/glu170 PubMed DOI
Calado R. T., Dumitriu B. (2013). Telomere dynamics in mice and humans. Semin. Hematol. 50 165–174. 10.1053/j.seminhematol.2013.03.030 PubMed DOI PMC
Cawthon R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Res. 30:e47 10.1093/nar/30.10.e47 PubMed DOI PMC
Cawthon R. M., Smith K. R., O’Brien E., Sivatchenko A., Kerber R. A. (2003). Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361 393–395. 10.1016/S0140-6736(03)12384-7 PubMed DOI
Chen J., Bryant M. A., Dent J. J., Sun Y., Desierto M. J., Young N. S. (2015). Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion. Exp. Gerontol. 72 251–260. 10.1016/j.exger.2015.10.016 PubMed DOI PMC
Chiu C. P., Dragowska W., Kim N. W., Vaziri H., Yui J., Thomas T. E., et al. (1996). Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14 239–248. 10.1002/stem.140239 PubMed DOI
Damm K., Hemmann U., Garin-Chesa P., Hauel N., Kauffmann I., Priepke H., et al. (2001). A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 20 6958–6968. 10.1093/emboj/20.24.6958 PubMed DOI PMC
Deelen J., Beekman M., Codd V., Trompet S., Broer L., Hagg S., et al. (2014). Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. Int. J. Epidemiol. 43 878–886. 10.1093/ije/dyt267 PubMed DOI PMC
Delhommeau F., Thierry A., Feneux D., Lauret E., Leclercq E., Courtier M. H., et al. (2002). Telomere dysfunction and telomerase reactivation in human leukemia cell lines after telomerase inhibition by the expression of a dominant-negative hTERT mutant. Oncogene 21 8262–8271. 10.1038/sj.onc.1206054 PubMed DOI
Effros R. B. (2011). Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress. Exp. Gerontol. 46 135–140. 10.1016/j.exger.2010.08.027 PubMed DOI PMC
Ergen A. V., Boles N. C., Goodell M. A. (2012). Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119 2500–2509. 10.1182/blood-2011-11-391730 PubMed DOI PMC
Fernandez Garcia M. S., Teruya-Feldstein J. (2014). The diagnosis and treatment of dyskeratosis congenita: a review. J. Blood Med. 5 157–167. PubMed PMC
Flores I., Cayuela M. L., Blasco M. A. (2005). Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309 1253–1256. 10.1126/science.1115025 PubMed DOI
Fok W. C., Niero E. L. O., Dege C., Brenner K. A., Sturgeon C. M., Batista L. F. Z. (2017). p53 mediates failure of human definitive hematopoiesis in dyskeratosis congenita. Stem Cell Rep. 9 409–418. 10.1016/j.stemcr.2017.06.015 PubMed DOI PMC
Gazzaniga F. S., Blackburn E. H. (2014). An antiapoptotic role for telomerase RNA in human immune cells independent of telomere integrity or telomerase enzymatic activity. Blood 124 3675–3684. 10.1182/blood-2014-06-582254 PubMed DOI PMC
Gizard F., Heywood E. B., Findeisen H. M., Zhao Y., Jones K. L., Cudejko C., et al. (2011). Telomerase activation in atherosclerosis and induction of telomerase reverse transcriptase expression by inflammatory stimuli in macrophages. Arterioscler. Thromb. Vasc. Biol. 31 245–252. 10.1161/ATVBAHA.110.219808 PubMed DOI PMC
Goldman F. D., Aubert G., Klingelhutz A. J., Hills M., Cooper S. R., Hamilton W. S., et al. (2008). Characterization of primitive hematopoietic cells from patients with dyskeratosis congenita. Blood 111 4523–4531. 10.1182/blood-2007-10-120204 PubMed DOI PMC
Greider C. W., Blackburn E. H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43 405–413. 10.1016/0092-8674(85)90170-9 PubMed DOI
Hiyama E., Hiyama K. (2007). Telomere and telomerase in stem cells. Br. J. Cancer 96 1020–1024. 10.1038/sj.bjc.6603671 PubMed DOI PMC
Hoffmeyer K., Raggioli A., Rudloff S., Anton R., Hierholzer A., Del Valle I., et al. (2012). Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336 1549–1554. 10.1126/science.1218370 PubMed DOI
Holohan B., Wright W. E., Shay J. W. (2014). Cell biology of disease: telomeropathies: an emerging spectrum disorder. J. Cell Biol. 205 289–299. 10.1083/jcb.201401012 PubMed DOI PMC
Hrdlickova R., Nehyba J., Bose H. R., Jr. (2009). Regulation of telomerase activity by interferon regulatory factors 4 and 8 in immune cells. Mol. Cell. Biol. 29 929–941. 10.1128/MCB.00961-08 PubMed DOI PMC
Hsieh M. H., Chen Y. T., Chen Y. T., Lee Y. H., Lu J., Chien C. L., et al. (2017). PARP1 controls KLF4-mediated telomerase expression in stem cells and cancer cells. Nucleic Acids Res. 45 10492–10503. 10.1093/nar/gkx683 PubMed DOI PMC
Huang J., Wang F., Okuka M., Liu N., Ji G., Ye X., et al. (2011). Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res. 21 779–792. 10.1038/cr.2011.16 PubMed DOI PMC
Huang Y., Liang P., Liu D., Huang J., Songyang Z. (2014). Telomere regulation in pluripotent stem cells. Prot. Cell 5 194–202. 10.1007/s13238-014-0028-1 PubMed DOI PMC
Imamura S., Uchiyama J., Koshimizu E., Hanai J., Raftopoulou C., Murphey R. D., et al. (2008). A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS One 3:e3364. 10.1371/journal.pone.0003364 PubMed DOI PMC
Jose S. S., Bendickova K., Fric J. (2018). High-throughput screening of senescence markers in hematopoietic stem cells derived from induced pluripotent stem cells. Methods Mol. Biol. 1771 121–130. 10.1007/978-1-4939-7792-5_10 PubMed DOI
Jose S. S., Bendickova K., Kepak T., Krenova Z., Fric J. (2017). Chronic inflammation in immune aging: role of pattern recognition receptor crosstalk with the telomere complex? Front. Immunol. 8:1078. 10.3389/fimmu.2017.01078 PubMed DOI PMC
Ju Z., Jiang H., Jaworski M., Rathinam C., Gompf A., Klein C., et al. (2007). Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat. Med. 13 742–747. 10.1038/nm1578 PubMed DOI
Kim K., Doi A., Wen B., Ng K., Zhao R., Cahan P., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature 467 285–290. 10.1038/nature09342 PubMed DOI PMC
Knudson M., Kulkarni S., Ballas Z. K., Bessler M., Goldman F. (2005). Association of immune abnormalities with telomere shortening in autosomal-dominant dyskeratosis congenita. Blood 105 682–688. 10.1182/blood-2004-04-1673 PubMed DOI
Kumar M., Witt B., Knippschild U., Koch S., Meena J. K., Heinlein C., et al. (2013). CEBP factors regulate telomerase reverse transcriptase promoter activity in whey acidic protein-T mice during mammary carcinogenesis. Int. J. Cancer 132 2032–2043. 10.1002/ijc.27880 PubMed DOI
Lee J., Kook H., Chung I., Kim H., Park M., Kim C., et al. (1999). Telomere length changes in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transpl. 24 411–415. 10.1038/sj.bmt.1701923 PubMed DOI
Lehmann G., Muradian K. K., Fraifeld V. E. (2013). Telomere length and body temperature-independent determinants of mammalian longevity? Front. Genet. 4:111. 10.3389/fgene.2013.00111 PubMed DOI PMC
Li S., Ferguson M. J., Hawkins C. J., Smith C., Elwood N. J. (2006). Human telomerase reverse transcriptase protects hematopoietic progenitor TF-1 cells from death and quiescence induced by cytokine withdrawal. Leukemia 20 1270–1278. 10.1038/sj.leu.2404251 PubMed DOI
Liang Y., Van Zant G., Szilvassy S. J. (2005). Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106 1479–1487. 10.1182/blood-2004-11-4282 PubMed DOI PMC
Lin Y., Damjanovic A., Metter E. J., Nguyen H., Truong T., Najarro K., et al. (2015). Age-associated telomere attrition of lymphocytes in vivo is co-ordinated with changes in telomerase activity, composition of lymphocyte subsets and health conditions. Clin. Sci. 128 367–377. 10.1042/CS20140481 PubMed DOI PMC
Lingner J., Hughes T. R., Shevchenko A., Mann M., Lundblad V., Cech T. R. (1997). Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276 561–567. 10.1126/science.276.5312.561 PubMed DOI
Lopez-Otin C., Blasco M. A., Partridge L., Serrano M., Kroemer G. (2013). The hallmarks of aging. Cell 153 1194–1217. 10.1016/j.cell.2013.05.039 PubMed DOI PMC
Marsh J. C., Will A. J., Hows J. M., Sartori P., Darbyshire P. J., Williamson P. J., et al. (1992). ”Stem cell” origin of the hematopoietic defect in dyskeratosis congenita. Blood 79 3138–3144. PubMed
Melguizo-Sanchis D., Xu Y., Taheem D., Yu M., Tilgner K., Barta T., et al. (2018). iPSC modeling of severe aplastic anemia reveals impaired differentiation and telomere shortening in blood progenitors. Cell Death Dis. 9:128. 10.1038/s41419-017-0141-1 PubMed DOI PMC
Merino A., Buendia P., Martin-Malo A., Aljama P., Ramirez R., Carracedo J. (2011). Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity. J. Immunol. 186 1809–1815. 10.4049/jimmunol.1001866 PubMed DOI
Mitchell J. R., Wood E., Collins K. (1999). A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402 551–555. 10.1038/990141 PubMed DOI
Morrison S. J., Prowse K. R., Ho P., Weissman I. L. (1996a). Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5 207–216. 10.1016/S1074-7613(00)80316-7 PubMed DOI
Morrison S. J., Wandycz A. M., Akashi K., Globerson A., Weissman I. L. (1996b). The aging of hematopoietic stem cells. Nat. Med. 2 1011–1016. 10.1038/nm0996-1011 PubMed DOI
Nelson N. D., Bertuch A. A. (2012). Dyskeratosis congenita as a disorder of telomere maintenance. Mutat. Res. 730 43–51. 10.1016/j.mrfmmm.2011.06.008 PubMed DOI PMC
Ng E. S., Davis R. P., Hatzistavrou T., Stanley E. G., Elefanty A. G. (2008a). Directed differentiation of human embryonic stem cells as spin embryoid bodies and a description of the hematopoietic blast colony forming assay. Curr. Protoc. Stem Cell Biol. Chap. 1:Unit 1D.3. 10.1002/9780470151808.sc01d03s4 PubMed DOI
Ng E. S., Davis R., Stanley E. G., Elefanty A. G. (2008b). A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat. Protoc. 3 768–776. 10.1038/nprot.2008.42 PubMed DOI
Ouellette M. M., Aisner D. L., Savre-Train I., Wright W. E., Shay J. W. (1999). Telomerase activity does not always imply telomere maintenance. Biochem. Biophys. Res. Commun. 254 795–803. 10.1006/bbrc.1998.0114 PubMed DOI
Palm W., de Lange T. (2008). How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42 301–334. 10.1146/annurev.genet.41.110306.130350 PubMed DOI
Park J. I., Venteicher A. S., Hong J. Y., Choi J., Jun S., Shkreli M., et al. (2009). Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460 66–72. 10.1038/nature08137 PubMed DOI PMC
Perdigones N., Perin J. C., Schiano I., Nicholas P., Biegel J. A., Mason P. J., et al. (2016). Clonal hematopoiesis in patients with dyskeratosis congenita. Am. J. Hematol. 91 1227–1233. 10.1002/ajh.24552 PubMed DOI PMC
Pereboeva L., Westin E., Patel T., Flaniken I., Lamb L., Klingelhutz A., et al. (2013). DNA damage responses and oxidative stress in dyskeratosis congenita. PLoS One 8:e76473. 10.1371/journal.pone.0076473 PubMed DOI PMC
Plunkett F. J., Franzese O., Finney H. M., Fletcher J. M., Belaramani L. L., Salmon M., et al. (2007). The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J. Immunol. 178 7710–7719. 10.4049/jimmunol.178.12.7710 PubMed DOI
Raval A., Behbehani G. K., Nguyen le X. T., Thomas D., Kusler B., Garbuzov A., et al. (2015). Reversibility of defective hematopoiesis caused by telomere shortening in telomerase knockout mice. PLoS One 10:e0131722. 10.1371/journal.pone.0131722 PubMed DOI PMC
Riou J. F., Guittat L., Mailliet P., Laoui A., Renou E., Petitgenet O., et al. (2002). Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc. Natl. Acad. Sci. U.S.A. 99 2672–2677. 10.1073/pnas.052698099 PubMed DOI PMC
Rosenbauer F., Tenen D. G. (2007). Transcription factors in myeloid development: balancing differentiation with transformation. Nat. Rev. Immunol. 7 105–117. 10.1038/nri2024 PubMed DOI
Samper E., Flores J. M., Blasco M. A. (2001). Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc-/- mice with short telomeres. EMBO Rep. 2 800–807. 10.1093/embo-reports/kve174 PubMed DOI PMC
Shao L., Wang Y., Chang J., Luo Y., Meng A., Zhou D. (2013). Hematopoietic stem cell senescence and cancer therapy-induced long-term bone marrow injury. Transl. Cancer Res. 2 397–411. PubMed PMC
Sharpless N. E., DePinho R. A. (2007). How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol. 8 703–713. 10.1038/nrm2241 PubMed DOI
Stanley S. E., Armanios M. (2015). The short and long telomere syndromes: paired paradigms for molecular medicine. Curr. Opin. Genet. Dev. 33 1–9. 10.1016/j.gde.2015.06.004 PubMed DOI PMC
Strong M. A., Vidal-Cardenas S. L., Karim B., Yu H., Guo N., Greider C. W. (2011). Phenotypes in mTERT(+)/(-) and mTERT(-)/(-) mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Mol. Cell. Biol. 31 2369–2379. 10.1128/MCB.05312-11 PubMed DOI PMC
Taniguchi Ishikawa E., Gonzalez-Nieto D., Ghiaur G., Dunn S. K., Ficker A. M., Murali B., et al. (2012). Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc. Natl. Acad. Sci. U.S.A. 109 9071–9076. 10.1073/pnas.1120358109 PubMed DOI PMC
Tian X., Doerig K., Park R., Can Ran, Qin A., Hwang C.et al. (2018). Evolution of telomere maintenance and tumour suppressor mechanisms across mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373:20160443. 10.1098/rstb.2016.0443 PubMed DOI PMC
Tian X., Kaufman D. S. (2008). Hematopoietic development of human embryonic stem cells in culture. Methods Mol. Biol. 430 119–133. 10.1007/978-1-59745-182-6_8 PubMed DOI
Townsley D. M., Dumitriu B., Young N. S. (2014). Bone marrow failure and the telomeropathies. Blood 124 2775–2783. 10.1182/blood-2014-05-526285 PubMed DOI PMC
Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. (1980). Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer 26 171–176. 10.1002/ijc.2910260208 PubMed DOI
von Zglinicki T., Martin-Ruiz C. M. (2005). Telomeres as biomarkers for ageing and age-related diseases. Curr. Mol. Med. 5 197–203. 10.2174/1566524053586545 PubMed DOI
Vulliamy T., Marrone A., Goldman F., Dearlove A., Bessler M., Mason P. J., et al. (2001). The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413 432–435. 10.1038/35096585 PubMed DOI
Wang J., Lu X., Sakk V., Klein C. A., Rudolph K. L. (2014a). Senescence and apoptosis block hematopoietic activation of quiescent hematopoietic stem cells with short telomeres. Blood 124 3237–3240. 10.1182/blood-2014-04-568055 PubMed DOI PMC
Wang L., Xiao H., Zhang X., Wang C., Huang H. (2014b). The role of telomeres and telomerase in hematologic malignancies and hematopoietic stem cell transplantation. J. Hematol. Oncol. 7:61. 10.1186/s13045-014-0061-9 PubMed DOI PMC
Winkler T., Hong S. G., Decker J. E., Morgan M. J., Wu C., Hughes W., et al. (2013). Defective telomere elongation and hematopoiesis from telomerase-mutant aplastic anemia iPSCs. J. Clin. Invest. 123 1952–1963. 10.1172/JCI67146 PubMed DOI PMC
Wong C. W., Hou P. S., Tseng S. F., Chien C. L., Wu K. J., Chen H. F., et al. (2010). Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells 28 1510–1517. 10.1002/stem.477 PubMed DOI
Wong J. M., Collins K. (2006). Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev. 20 2848–2858. 10.1101/gad.1476206 PubMed DOI PMC
Wynn R., Thornley I., Freedman M., Saunders E. F. (1999). Telomere shortening in leucocyte subsets of long-term survivors of allogeneic bone marrow transplantation. Br. J. Haematol. 105 997–1001. 10.1046/j.1365-2141.1999.01450.x PubMed DOI
Wynn R. F., Cross M. A., Hatton C., Will A. M., Lashford L. S., Dexter T. M., et al. (1998). Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants. Lancet 351 178–181. 10.1016/S0140-6736(97)08256-1 PubMed DOI
Yehuda S., Yanai H., Priel E., Fraifeld V. E. (2017). Differential decrease in soluble and DNA-bound telomerase in senescent human fibroblasts. Biogerontology 18 525–533. 10.1007/s10522-017-9688-6 PubMed DOI
Yu J., Hu K., Smuga-Otto K., Tian S., Stewart R., Slukvin I. I., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science 324 797–801. 10.1126/science.1172482 PubMed DOI PMC