Modification of a hollow-fibre polyethersulfone membrane using silver nanoparticles formed in situ for biofouling prevention

. 2018 Apr 17 ; 8 (26) : 14552-14560. [epub] 20180418

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35540741

Biofouling represents a serious problem limiting the widespread application of membrane technology. Therefore, the aim of this study was to develop and verify a new modification method based on the in situ formation of silver nanoparticles and their incorporation into a membrane polymer to prevent biofouling. The modification method consisted of soaking a commercial hollow-fibre polyethersulfone membrane in a solution of silver ions, diffusion of ions into the membrane polymer, and their reduction using ascorbic acid. Such a modified membrane displayed a lower tendency towards biofouling, exhibiting an about 15% higher permeability compared to an unmodified membrane when filtering actual wastewater treatment plant effluent. The modification also led to the formation of stable silver nanoparticles (mostly in the range of 25-50 nm) homogenously distributed on the surface of the hollow-fibres. This resulted in higher surface hydrophilicity (the water contact angle decreased from 91° to 86°) contributing to the biofouling prevention. The modified membrane also showed high stability, as only 2.1% of the total silver leached after 8 h of filtration. Moreover, no changes in the original membrane cross-section structure or separation properties were observed. Besides the improved antibiofouling properties of the modified membrane, the main advantage of the developed method is its simplicity, short reaction time, absence of high energy-consuming initiation, and the possibility to apply it on site, thus even with commercial membrane modules. It will increase the application potential of membranes in the field of wastewater treatment.

Zobrazit více v PubMed

Judd S., The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment, Elsevier, Oxford, 2011

Yu L. Zhang Y. Zhang B. Liu J. Zhang H. Song C. J. Membr. Sci. 2013;447:452–462. doi: 10.1016/j.memsci.2013.07.042. DOI

Boyle-Gotla A. Jensen P. D. Yap S. D. Pidou M. Wang Y. Batstone D. J. J. Membr. Sci. 2014;467:153–161. doi: 10.1016/j.memsci.2014.05.028. DOI

Meng F. Shi B. Yang F. Zhang H. Bioprocess Biosyst. Eng. 2007;30:359–367. doi: 10.1007/s00449-007-0132-1. PubMed DOI

Dalmau M. Monclús H. Gabarrón S. Rodriguez-Roda I. Comas J. Bioresour. Technol. 2014;171:103–112. doi: 10.1016/j.biortech.2014.08.031. PubMed DOI

Dvořák L. Gómez M. Dvořáková M. Růžičková I. Wanner J. Bioresour. Technol. 2011;102:6870–6875. doi: 10.1016/j.biortech.2011.04.061. PubMed DOI

Tang Z. Q. Li W. Zhou J. Yu H. Y. Huang L. Yan M. G. Gu J. S. Wei X. W. Sep. Purif. Technol. 2009;64:332–336. doi: 10.1016/j.seppur.2008.10.026. DOI

Bae T. H. Tak T. H. J. Membr. Sci. 2005;264:151–160. doi: 10.1016/j.memsci.2005.04.037. DOI

Branco L. C. Crespo J. G. Afonso C. A. Chem.–Eur. J. 2002;8:3865–3871. doi: 10.1002/1521-3765(20020902)8:17<3865::AID-CHEM3865>3.0.CO;2-L. PubMed DOI

Pearce G. Filtr. Sep. 2007;44:36–38.

Mu L. J. Zhao W. Z. Appl. Surf. Sci. 2009;255:7273–7278. doi: 10.1016/j.apsusc.2009.03.081. DOI

Su Y. Li C. Zhao W. Shi Q. Wang H. Jiang Z. Zhu S. J. Membr. Sci. 2008;322:171–177. doi: 10.1016/j.memsci.2008.05.047. DOI

Liu J. Tian C. Xiong J. Wang L. J. Colloid Interface Sci. 2017;494:124–129. doi: 10.1016/j.jcis.2017.01.078. PubMed DOI

Zhao Z. P. Wang Z. Wang S. C. J. Membr. Sci. 2003;217:151–158. doi: 10.1016/S0376-7388(03)00105-4. DOI

Nady N. Franssen M. C. R. Zuilhof H. Eldin M. S. M. Boom R. Schroën K. Desalination. 2011;275:1–9. doi: 10.1016/j.desal.2011.03.010. DOI

Yu H. Y. Xu Z. K. Lei H. Hu M. X. Yang Q. Sep. Purif. Technol. 2007;53:119–125. doi: 10.1016/j.seppur.2006.07.002. DOI

Krystosiak P. Tomaszewski W. Megiel E. J. Colloid Interface Sci. 2017;498:9–21. doi: 10.1016/j.jcis.2017.03.041. PubMed DOI

Bae T. H. Kim I. C. Tak T. M. J. Membr. Sci. 2006;275:1–5. doi: 10.1016/j.memsci.2006.01.023. DOI

Igbinigun E. Fennell Y. Malaisamy R. Jones K. L. Morris V. J. Membr. Sci. 2016;514:518–526. doi: 10.1016/j.memsci.2016.05.024. DOI

Ahmad A. L. Abdulkarim A. A. Ooi B. S. Ismail S. Chem. Eng. J. 2013;223:246–267. doi: 10.1016/j.cej.2013.02.130. DOI

Meng F. Chae S. R. Drews A. Kraume M. Shin H. S. Yang F. Water Res. 2009;43:1489–1512. doi: 10.1016/j.watres.2008.12.044. PubMed DOI

Judd S. Filtr. Sep. 2002;39:30–31. doi: 10.1016/S0015-1882(02)80169-0. DOI

Rahimpour A. Madaeni S. S. Taheri A. H. Mansourpanah Y. J. Membr. Sci. 2008;313:158–169. doi: 10.1016/j.memsci.2007.12.075. DOI

Dolina J. Dlask O. Lederer T. Dvořák L. Chem. Eng. J. 2015;275:125–133. doi: 10.1016/j.cej.2015.04.008. DOI

Biswas P. Bandyopadhyaya R. J. Colloid Interface Sci. 2017;491:13–26. doi: 10.1016/j.jcis.2016.11.060. PubMed DOI

Tang L. Huynh K. A. Fleming M. L. Larronde-Larretche M. Chen K. L. J. Colloid Interface Sci. 2015;451:125–133. doi: 10.1016/j.jcis.2015.03.051. PubMed DOI

Zhang M. Field R. W. Zhang K. J. Membr. Sci. 2014;471:274–284. doi: 10.1016/j.memsci.2014.08.021. DOI

Panáček A. Kvitek L. Prucek R. Kolar M. Vecerova R. Pizurova N. Sharma V. K. Nevečná T. Zbořil R. J. Phys. Chem. B. 2006;110:16248–16253. doi: 10.1021/jp063826h. PubMed DOI

Morones J. R. Elechiguerra J. L. Camacho A. Holt K. Kouri J. B. Ramírez J. T. Yacaman M. J. Nanotechnology. 2005;16:2346. doi: 10.1088/0957-4484/16/10/059. PubMed DOI

Pal S. Tak Y. K. Song J. M. Appl. Environ. Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC

Yan L. Li Y. S. Xiang C. B. Xianda S. J. Membr. Sci. 2006;276:162–167. doi: 10.1016/j.memsci.2005.09.044. DOI

Zodrow K. Brunet L. Mahendra S. Li D. Zhang A. Li Q. Alvarez P. J. J. Water Res. 2009;43:715–723. doi: 10.1016/j.watres.2008.11.014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...