Modification of a hollow-fibre polyethersulfone membrane using silver nanoparticles formed in situ for biofouling prevention
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35540741
PubMed Central
PMC9079955
DOI
10.1039/c8ra02026d
PII: c8ra02026d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Biofouling represents a serious problem limiting the widespread application of membrane technology. Therefore, the aim of this study was to develop and verify a new modification method based on the in situ formation of silver nanoparticles and their incorporation into a membrane polymer to prevent biofouling. The modification method consisted of soaking a commercial hollow-fibre polyethersulfone membrane in a solution of silver ions, diffusion of ions into the membrane polymer, and their reduction using ascorbic acid. Such a modified membrane displayed a lower tendency towards biofouling, exhibiting an about 15% higher permeability compared to an unmodified membrane when filtering actual wastewater treatment plant effluent. The modification also led to the formation of stable silver nanoparticles (mostly in the range of 25-50 nm) homogenously distributed on the surface of the hollow-fibres. This resulted in higher surface hydrophilicity (the water contact angle decreased from 91° to 86°) contributing to the biofouling prevention. The modified membrane also showed high stability, as only 2.1% of the total silver leached after 8 h of filtration. Moreover, no changes in the original membrane cross-section structure or separation properties were observed. Besides the improved antibiofouling properties of the modified membrane, the main advantage of the developed method is its simplicity, short reaction time, absence of high energy-consuming initiation, and the possibility to apply it on site, thus even with commercial membrane modules. It will increase the application potential of membranes in the field of wastewater treatment.
Zobrazit více v PubMed
Judd S., The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment, Elsevier, Oxford, 2011
Yu L. Zhang Y. Zhang B. Liu J. Zhang H. Song C. J. Membr. Sci. 2013;447:452–462. doi: 10.1016/j.memsci.2013.07.042. DOI
Boyle-Gotla A. Jensen P. D. Yap S. D. Pidou M. Wang Y. Batstone D. J. J. Membr. Sci. 2014;467:153–161. doi: 10.1016/j.memsci.2014.05.028. DOI
Meng F. Shi B. Yang F. Zhang H. Bioprocess Biosyst. Eng. 2007;30:359–367. doi: 10.1007/s00449-007-0132-1. PubMed DOI
Dalmau M. Monclús H. Gabarrón S. Rodriguez-Roda I. Comas J. Bioresour. Technol. 2014;171:103–112. doi: 10.1016/j.biortech.2014.08.031. PubMed DOI
Dvořák L. Gómez M. Dvořáková M. Růžičková I. Wanner J. Bioresour. Technol. 2011;102:6870–6875. doi: 10.1016/j.biortech.2011.04.061. PubMed DOI
Tang Z. Q. Li W. Zhou J. Yu H. Y. Huang L. Yan M. G. Gu J. S. Wei X. W. Sep. Purif. Technol. 2009;64:332–336. doi: 10.1016/j.seppur.2008.10.026. DOI
Bae T. H. Tak T. H. J. Membr. Sci. 2005;264:151–160. doi: 10.1016/j.memsci.2005.04.037. DOI
Branco L. C. Crespo J. G. Afonso C. A. Chem.–Eur. J. 2002;8:3865–3871. doi: 10.1002/1521-3765(20020902)8:17<3865::AID-CHEM3865>3.0.CO;2-L. PubMed DOI
Pearce G. Filtr. Sep. 2007;44:36–38.
Mu L. J. Zhao W. Z. Appl. Surf. Sci. 2009;255:7273–7278. doi: 10.1016/j.apsusc.2009.03.081. DOI
Su Y. Li C. Zhao W. Shi Q. Wang H. Jiang Z. Zhu S. J. Membr. Sci. 2008;322:171–177. doi: 10.1016/j.memsci.2008.05.047. DOI
Liu J. Tian C. Xiong J. Wang L. J. Colloid Interface Sci. 2017;494:124–129. doi: 10.1016/j.jcis.2017.01.078. PubMed DOI
Zhao Z. P. Wang Z. Wang S. C. J. Membr. Sci. 2003;217:151–158. doi: 10.1016/S0376-7388(03)00105-4. DOI
Nady N. Franssen M. C. R. Zuilhof H. Eldin M. S. M. Boom R. Schroën K. Desalination. 2011;275:1–9. doi: 10.1016/j.desal.2011.03.010. DOI
Yu H. Y. Xu Z. K. Lei H. Hu M. X. Yang Q. Sep. Purif. Technol. 2007;53:119–125. doi: 10.1016/j.seppur.2006.07.002. DOI
Krystosiak P. Tomaszewski W. Megiel E. J. Colloid Interface Sci. 2017;498:9–21. doi: 10.1016/j.jcis.2017.03.041. PubMed DOI
Bae T. H. Kim I. C. Tak T. M. J. Membr. Sci. 2006;275:1–5. doi: 10.1016/j.memsci.2006.01.023. DOI
Igbinigun E. Fennell Y. Malaisamy R. Jones K. L. Morris V. J. Membr. Sci. 2016;514:518–526. doi: 10.1016/j.memsci.2016.05.024. DOI
Ahmad A. L. Abdulkarim A. A. Ooi B. S. Ismail S. Chem. Eng. J. 2013;223:246–267. doi: 10.1016/j.cej.2013.02.130. DOI
Meng F. Chae S. R. Drews A. Kraume M. Shin H. S. Yang F. Water Res. 2009;43:1489–1512. doi: 10.1016/j.watres.2008.12.044. PubMed DOI
Judd S. Filtr. Sep. 2002;39:30–31. doi: 10.1016/S0015-1882(02)80169-0. DOI
Rahimpour A. Madaeni S. S. Taheri A. H. Mansourpanah Y. J. Membr. Sci. 2008;313:158–169. doi: 10.1016/j.memsci.2007.12.075. DOI
Dolina J. Dlask O. Lederer T. Dvořák L. Chem. Eng. J. 2015;275:125–133. doi: 10.1016/j.cej.2015.04.008. DOI
Biswas P. Bandyopadhyaya R. J. Colloid Interface Sci. 2017;491:13–26. doi: 10.1016/j.jcis.2016.11.060. PubMed DOI
Tang L. Huynh K. A. Fleming M. L. Larronde-Larretche M. Chen K. L. J. Colloid Interface Sci. 2015;451:125–133. doi: 10.1016/j.jcis.2015.03.051. PubMed DOI
Zhang M. Field R. W. Zhang K. J. Membr. Sci. 2014;471:274–284. doi: 10.1016/j.memsci.2014.08.021. DOI
Panáček A. Kvitek L. Prucek R. Kolar M. Vecerova R. Pizurova N. Sharma V. K. Nevečná T. Zbořil R. J. Phys. Chem. B. 2006;110:16248–16253. doi: 10.1021/jp063826h. PubMed DOI
Morones J. R. Elechiguerra J. L. Camacho A. Holt K. Kouri J. B. Ramírez J. T. Yacaman M. J. Nanotechnology. 2005;16:2346. doi: 10.1088/0957-4484/16/10/059. PubMed DOI
Pal S. Tak Y. K. Song J. M. Appl. Environ. Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC
Yan L. Li Y. S. Xiang C. B. Xianda S. J. Membr. Sci. 2006;276:162–167. doi: 10.1016/j.memsci.2005.09.044. DOI
Zodrow K. Brunet L. Mahendra S. Li D. Zhang A. Li Q. Alvarez P. J. J. Water Res. 2009;43:715–723. doi: 10.1016/j.watres.2008.11.014. PubMed DOI