Dynamic Proteomic and miRNA Analysis of Polysomes from Isolated Mouse Heart After Langendorff Perfusion
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, audiovizuální média
Grantová podpora
P01 HL112730
NHLBI NIH HHS - United States
R01 HL111362
NHLBI NIH HHS - United States
R01 HL132075
NHLBI NIH HHS - United States
PubMed
30222143
PubMed Central
PMC6231915
DOI
10.3791/58079
Knihovny.cz E-zdroje
- MeSH
- messenger RNA genetika MeSH
- mikro RNA metabolismus MeSH
- myši MeSH
- polyribozomy metabolismus MeSH
- proteomika metody MeSH
- srdce růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH
Studies in dynamic changes in protein translation require specialized methods. Here we examined changes in newly-synthesized proteins in response to ischemia and reperfusion using the isolated perfused mouse heart coupled with polysome profiling. To further understand the dynamic changes in protein translation, we characterized the mRNAs that were loaded with cytosolic ribosomes (polyribosomes or polysomes) and also recovered mitochondrial polysomes and compared mRNA and protein distribution in the high-efficiency fractions (numerous ribosomes attached to mRNA), low-efficiency (fewer ribosomes attached) which also included mitochondrial polysomes, and the non-translating fractions. miRNAs can also associate with mRNAs that are being translated, thereby reducing the efficiency of translation, we examined the distribution of miRNAs across the fractions. The distribution of mRNAs, miRNAs, and proteins was examined under basal perfused conditions, at the end of 30 min of global no-flow ischemia, and after 30 min of reperfusion. Here we present the methods used to accomplish this analysis-in particular, the approach to optimization of protein extraction from the sucrose gradient, as this has not been described before-and provide some representative results.
The Smidt Heart Institute Cedars Sinai Medical Center
Zobrazit více v PubMed
Pourpirali S, Valacca C, Merlo P, Rizza S, D’Amico S, Cecconi F. Prolonged pseudohypoxia targets ambra1 mrna to p-bodies for translational repression. PLoS ONE. 2015;10:e0129750. PubMed PMC
Andres AM, Tucker KC, Thomas A, Taylor DJ, Sengstock D, Jahania SM, Dabir R, Pourpirali S, Brown JA, Westbrook DG, Ballinger SW, Mentzer RM, Jr, Gottlieb RA. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight. 2017;2:e89303. PubMed PMC
Kislinger T, Cox B, Kannan A, Chung C, Hu P, Ignatchenko A, Scott MS, Gramolini AO, Morris Q, Hallett MT, Rossant J, Hughes TR, Frey B, Emili A. Global survey of organ and organelle protein expression in mouse: Combined proteomic and transcriptomic profiling. Cell. 2006;125:173–186. PubMed
Kren BT, Wong PY, Shiota A, Zhang X, Zeng Y, Steer CJ. Polysome trafficking of transcripts and micrornas in regenerating liver after partial hepatectomy. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2009;297:G1181–G1192. PubMed PMC
Gottlieb RA, Pourpirali S. Lost in translation: Mirnas and mrnas in ischemic preconditioning and ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology. 2016;95:70–77. PubMed PMC
Coudert L, Adjibade P, Mazroui R. Analysis of translation initiation during stress conditions by polysome profiling. Journal of Visualized Experiments. 2014. PubMed PMC
Lorsch J. Methods in enzymology. Laboratory methods in enzymology: Rna. Preface. Methods in Enzymology. 2013;530:xxi. PubMed
Kuzniewska B, Chojnacka M, Milek J, Dziembowska M. Preparation of polysomal fractions from mouse brain synaptoneurosomes and analysis of polysomal-bound mrnas. Journal of Neuroscience Methods. 2018;293:226–233. PubMed
He SL, Green R. Polysome analysis of mammalian cells. Methods in Enzymology. 2013;530:183–192. PubMed
Molotski N, Soen Y. Differential association of micrornas with polysomes reflects distinct strengths of interactions with their mrna targets. RNA. 2012;18:1612–1623. PubMed PMC
Maroney PA, Yu Y, Fisher J, Nilsen TW. Evidence that micrornas are associated with translating messenger rnas in human cells. Nature Structural and Molecular Biology. 2006;13:1102–1107. PubMed
Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, Singha RS, Malakar AK, Chakraborty S. Interplay between mirnas and human diseases. Journal of Cellular Physiology. 2018;233:2007–2018. PubMed
Rupaimoole R, Slack FJ. Microrna therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery. 2017;16:203–222. PubMed
Nelson PT, Hatzigeorgiou AG, Mourelatos Z. Mirnp:Mrna association in polyribosomes in a human neuronal cell line. RNA. 2004;10:387–394. PubMed PMC
Nottrott S, Simard MJ, Richter JD. Human let-7a mirna blocks protein production on actively translating polyribosomes. Nature Structural and Molecular Biology. 2006;13:1108–1114. PubMed
Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM, Ruvkun G. Identification of many micrornas that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America. 2004. pp. 360–365. PubMed PMC
Androsavich JR, Chau BN, Bhat B, Linsley PS, Walter NG. Disease-linked microrna-21 exhibits drastically reduced mrna binding and silencing activity in healthy mouse liver. RNA. 2012;18:1510–1526. PubMed PMC
Kraushar ML, Thompson K, Wijeratne HR, Viljetic B, Sakers K, Marson JW, Kontoyiannis DL, Buyske S, Hart RP, Rasin MR. Temporally defined neocortical translation and polysome assembly are determined by the rna-binding protein hu antigen r. Proceedings of the National Academy of Sciences of the United States of America. 2014. pp. E3815–E3824. PubMed PMC
McClatchy DB, Ma Y, Liu C, Stein BD, Martinez-Bartolome S, Vasquez D, Hellberg K, Shaw RJ, Yates JR., 3rd Pulsed azidohomoalanine labeling in mammals (palm) detects changes in liver-specific lkb1 knockout mice. Journal of Proteome Research. 2015;14:4815–4822. PubMed PMC
Schiapparelli LM, McClatchy DB, Liu HH, Sharma P, Yates JR, 3rd, Cline HT. Direct detection of biotinylated proteins by mass spectrometry. Journal of Proteome Research. 2014;13:3966–3978. PubMed PMC
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nature Methods. 2009;6:359–362. PubMed
Rajalingam D, Loftis C, Xu JJ, Kumar TK. Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Science. 2009;18:980–993. PubMed PMC
Fic E, Kedracka-Krok S, Jankowska U, Pirog A, Dziedzicka-Wasylewska M. Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis. 2010;31:3573–3579. PubMed
Sashital DG, Greeman CA, Lyumkis D, Potter CS, Carragher B, Williamson JR. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30s subunit assembly in e. Coli. Elife. 2014;3 PubMed PMC
Liang S, Bellato HM, Lorent J, Lupinacci FCS, Oertlin C, van Hoef V, Andrade VP, Roffé M, Masvidal L, Hajj GNM, Larsson O. Polysome-profiling in small tissue samples. Nucleic Acids Research. 2018;46:e3. PubMed PMC