Can Arginase Inhibitors Be the Answer to Therapeutic Challenges in Alzheimer's Disease?
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
30242774
PubMed Central
PMC6277284
DOI
10.1007/s13311-018-0668-6
PII: S1878-7479(23)01030-9
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease., Amyloid beta, Arginine metabolism, Cognitive enhancers, L-Norvaline, Nitric oxide,
- MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- arginasa antagonisté a inhibitory metabolismus MeSH
- inhibitory enzymů terapeutické užití MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arginasa MeSH
- inhibitory enzymů MeSH
While the extensive hunt for therapeutics combating Alzheimer's disease (AD) has fallen short of delivering effective treatments, breakthroughs towards understanding the disease mechanisms and identifying areas for future research have nevertheless been enabled. The majority of clinical trials with β- and γ-secretase modulators have been suspended from additional studies or terminated due to toxicity issues and health concerns. The lack of progress in developing innovative AD therapies has also prompted a resurgence of interest in more traditional symptomatic treatments with cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, as well as in the research of immune response modulators. Recently, evidence has emerged showing that inhibitors of arginine metabolism and in particular blockers of arginase, an enzyme that catalyzes the breakdown of L-arginine, could present an effective therapeutic candidate for halting the progression of AD and boosting cognition and memory. In this commentary, we present a brief overview of reports on arginase inhibitors in AD mouse models and discuss emerging advantages and areas for careful consideration on the road to clinical translation.
Faculty of Medicine at Charles University 116 36 Prague Czechia
International Centre for Neurotherapeutics Dublin City University 9 Dublin Ireland
Munich School of Bioengineering Technical University Munich D 80333 Munich Germany
The National Institute of Mental Health Topolová 748 250 67 Klecany Czechia
Zobrazit více v PubMed
Ovsepian SV, et al. Synaptic vesicle cycle and amyloid beta: Biting the hand that feeds. Alzheimers Dement. 2018;14(4):502–513. doi: 10.1016/j.jalz.2018.01.011. PubMed DOI
Spires-Jones TL, Hyman BT. The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer’s Disease. Neuron. 2014;82(4):756–771. doi: 10.1016/j.neuron.2014.05.004. PubMed DOI PMC
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews Molecular Cell Biology. 2007;8(2):101–112. doi: 10.1038/nrm2101. PubMed DOI
Walsh DM, Selkoe DJ. Oligomers in the brain: The emerging role of soluble protein aggregates in neurodegeneration. Protein and Peptide Letters. 2004;11(3):213–228. doi: 10.2174/0929866043407174. PubMed DOI
Haass C. Take five--BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J. 2004;23(3):483–8. doi: 10.1038/sj.emboj.7600061. PubMed DOI PMC
Vassar R, et al. The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J Neurosci. 2009;29(41):12787–94. doi: 10.1523/JNEUROSCI.3657-09.2009. PubMed DOI PMC
Imbimbo BP, Giardina GA. gamma-secretase inhibitors and modulators for the treatment of Alzheimer’s disease: disappointments and hopes. Curr Top Med Chem. 2011;11(12):1555–70. doi: 10.2174/156802611795860942. PubMed DOI
Kumar D, et al. Secretase inhibitors for the treatment of Alzheimer’s disease: Long road ahead. Eur J Med Chem. 2018;148:436–452. doi: 10.1016/j.ejmech.2018.02.035. PubMed DOI
Egan MF, et al. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer’s Disease. N Engl J Med. 2018;378(18):1691–1703. doi: 10.1056/NEJMoa1706441. PubMed DOI PMC
Mullard A. BACE inhibitor bust in Alzheimer trial. Nat Rev Drug Discov. 2017;16(3):155. PubMed
Mullard A. BACE failures lower AD expectations, again. Nat Rev Drug Discov. 2018;17(6):385. PubMed
De Strooper B. Lessons from a failed gamma-secretase Alzheimer trial. Cell. 2014;159(4):721–6. doi: 10.1016/j.cell.2014.10.016. PubMed DOI
Anand, R., K.D. Gill, and A.A. Mahdi, Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology, 2014. 76 Pt A: p. 27–50. PubMed
Ovsepian SV, O’Leary VB, Zaborszky L. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission. Neuroscientist. 2016;22(3):238–51. doi: 10.1177/1073858415588264. PubMed DOI PMC
Rafii MS, Aisen PS. Recent developments in Alzheimer’s disease therapeutics. BMC Med. 2009;7:7. doi: 10.1186/1741-7015-7-7. PubMed DOI PMC
Kan MJ, et al. Arginine Deprivation and Immune Suppression in a Mouse Model of Alzheimer’s Disease. Journal of Neuroscience. 2015;35(15):5969–5982. doi: 10.1523/JNEUROSCI.4668-14.2015. PubMed DOI PMC
Abeloff MD, et al. Phase I trial and pharmacokinetic studies of alpha-difluoromethylornithine--an inhibitor of polyamine biosynthesis. J Clin Oncol. 1984;2(2):124–30. doi: 10.1200/JCO.1984.2.2.124. PubMed DOI
Pepin J, et al. Difluoromethylornithine for arseno-resistant Trypanosoma brucei gambiense sleeping sickness. Lancet. 1987;2(8573):1431–3. doi: 10.1016/S0140-6736(87)91131-7. PubMed DOI
Polis, P., et al., L-norvaline Reverses Cognitive Decline and Synaptic Loss in a Murine Model of Alzheimer’s Disease. Neurotherapeutics, 2018. 10.1101/354290. PubMed PMC
Oddo S, et al. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiology of Aging. 2003;24(8):1063–1070. doi: 10.1016/j.neurobiolaging.2003.08.012. PubMed DOI
Oddo S, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular A beta and synaptic dysfunction. Neuron. 2003;39(3):409–421. doi: 10.1016/S0896-6273(03)00434-3. PubMed DOI
Mitchell WK, et al. Supplementing essential amino acids with the nitric oxide precursor, l-arginine, enhances skeletal muscle perfusion without impacting anabolism in older men. Clin Nutr. 2017;36(6):1573–1579. doi: 10.1016/j.clnu.2016.09.031. PubMed DOI
Ohta F, et al. Low-dose L-arginine administration increases microperfusion of hindlimb muscle without affecting blood pressure in rats. Proc Natl Acad Sci U S A. 2007;104(4):1407–11. doi: 10.1073/pnas.0610207104. PubMed DOI PMC
Morris SM. Arginine metabolism: Boundaries of our knowledge. Journal of Nutrition. 2007;137(6):1602s–1609s. doi: 10.1093/jn/137.6.1602S. PubMed DOI
Wu GY, Morris SM. Arginine metabolism: nitric oxide and beyond. Biochemical Journal. 1998;336:1–17. doi: 10.1042/bj3360001. PubMed DOI PMC
DeFelipe, J. and S. L., The Beautiful Brain: The Drawings of Ramon y Cajal. 2017, New York: Abrams & Chronicle Books.
Zhang Y, Barres BA. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol. 2010;20(5):588–94. doi: 10.1016/j.conb.2010.06.005. PubMed DOI
Hansmannel F, et al. Is the Urea Cycle Involved in Alzheimer’s Disease? Journal of Alzheimers Disease. 2010;21(3):1013–1021. doi: 10.3233/JAD-2010-100630. PubMed DOI PMC
Caldwell RB, et al. Arginase: an old enzyme with new tricks. Trends Pharmacol Sci. 2015;36(6):395–405. doi: 10.1016/j.tips.2015.03.006. PubMed DOI PMC
Shosha E, et al. Arginase 2 promotes neurovascular degeneration during ischemia/reperfusion injury. Cell Death Dis. 2016;7(11):e2483. doi: 10.1038/cddis.2016.295. PubMed DOI PMC
Patassini S, et al. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington’s disease. Biochemical and Biophysical Research Communications. 2015;468(1–2):161–166. doi: 10.1016/j.bbrc.2015.10.140. PubMed DOI