Development of Policy Relevant Human Biomonitoring Indicators for Chemical Exposure in the European Population
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu konsensus - konference, časopisecké články, práce podpořená grantem
PubMed
30248963
PubMed Central
PMC6209865
DOI
10.3390/ijerph15102085
PII: ijerph15102085
Knihovny.cz E-zdroje
- Klíčová slova
- HBM, HBM4EU, groups of substances, health-based guidance value, human biomonitoring, indicator, science-policy translation,
- MeSH
- dítě MeSH
- dospělí MeSH
- environmentální politika * MeSH
- Evropská unie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- monitorování životního prostředí metody MeSH
- vystavení vlivu životního prostředí analýza MeSH
- zdravotní politika * MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- konsensus - konference MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
The European Union's 7th Environmental Action Programme (EAP) aims to assess and minimize environmental health risks from the use of hazardous chemicals by 2020. From this angle, policy questions like whether an implemented policy to reduce chemical exposure has had an effect over time, whether the health of people in specific regions or subpopulations is at risk, or whether the body burden of chemical substances (the internal exposure) varies with, for example, time, country, sex, age, or socio-economic status, need to be answered. Indicators can help to synthesize complex scientific information into a few key descriptors with the purpose of providing an answer to a non-expert audience. Human biomonitoring (HBM) indicators at the European Union (EU) level are unfortunately lacking. Within the Horizon2020 European Human Biomonitoring project HBM4EU, an approach to develop European HBM indicators was worked out. To learn from and ensure interoperability with other European indicators, 15 experts from the HBM4EU project (German Umweltbundesamt (UBA), Flemish research institute VITO, University of Antwerp, European Environment Agency (EEA)), and the World Health Organization (WHO), European Core Health Indicator initiative (ECHI), Eurostat, Swiss ETH Zurich and the Czech environmental institute CENIA, and contributed to a workshop, held in June 2017 at the EEA in Copenhagen. First, selection criteria were defined to evaluate when and if results of internal chemical exposure measured by HBM, need to be translated into a European HBM-based indicator. Two main aspects are the HBM indicator's relevance for policy, society, health, and the quality of the biomarker data (availability, comparability, ease of interpretation). Secondly, an approach for the calculation of the indicators was designed. Two types of indicators were proposed: 'sum indicators of internal exposure' derived directly from HBM biomarker concentrations and 'indicators for health risk', comparing HBM concentrations to HBM health-based guidance values (HBM HBGVs). In the latter case, both the percentage of the studied population exceeding the HBM HBGVs (PE) and the extent of exceedance (EE), calculated as the population's exposure level divided by the HBM HBGV, can be calculated. These indicators were applied to two examples of hazardous chemicals: bisphenol A (BPA) and per- and polyfluoroalkyl substances (PFASs), which both have high policy and societal relevance and for which high quality published data were available (DEMOCOPHES, Swedish monitoring campaign). European HBM indicators help to summarize internal exposure to chemical substances among the European population and communicate to what degree environmental policies are successful in keeping internal exposures sufficiently low. The main aim of HBM indicators is to allow follow-up of chemical safety in Europe.
Department of Chemical Engineering Aristotle University of Thessaloniki 54124 Thessaloniki Greece
European Environment Agency 1050 Copenhagen Denmark
Flemish Institute for Technological Research Sustainable Health 2400 Mol Belgium
German Environment Agency 14195 Berlin Germany
Institute of Environmental Medicine 171 77 Stockholm Sweden
Institute of Risk Assessment Sciences Utrecht University 3508 TC Utrecht The Netherlands
Research Centre for Toxic Compounds in the Environment Masaryk University 611 37 Brno Czech Republic
Zobrazit více v PubMed
HBM4EU. [(accessed on 3 September 2018)]; Available online: https://www.hbm4eu.eu/about-hbm4eu/
Ganzleben C., Antignac J.-P., Barouki R., Castaño A., Fiddicke U., Klánová J., Lebret E., Olea N., Sarigiannis D., Schoeters G.R., et al. Human biomonitoring as a tool to support chemicals regulation in the European Union. Int. J. Hyg. Environ. Health. 2017;220:94–97. doi: 10.1016/j.ijheh.2017.01.007. PubMed DOI
Council of the European Union Outcome of the Council meeting; Proceedings of the 3512nd Council Meeting, Environment; Brussels, Belgium. 19 December 2016.
EC Study for the Strategy for a Non-Toxic Environment of the 7th Environment Action Programme Final Report. [(accessed on 3 September 2018)]; Available online: http://ec.europa.eu/environment/chemicals/non-toxic/pdf/NTE%20main%20report%20final.pdf.
EU Decision No 1386/2013/EU of the European Parliament and of the Council of 20 November 2013 on a General Union Environment Action Programme to 2020 Living Well, Within the Limits of Our Planet, OJ L 354, 20.12.2013, pp. 171–200. [(accessed on 3 September 2018)];2013 Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32013D1386.
Eurostat Towards a Harmonised Methodology for Statistical Indicators–Part 3: Relevance of Indicators for Policy Making. [(accessed on 3 September 2018)]; Available online: https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/KS-GQ-17-007?inheritRedirect=true.
Wills J.T., Briggs D.J. Developing indicators for environment and health. World Health Stat. Q. 1995;48:155–163. PubMed
WHO Environmental Health Indicators: Framework and Methodologies. [(accessed on 3 September 2018)]; Available online: http://www.who.int/ceh/publications/cehframework/en/
Smolders R., Schramm K.-W., Stenius U., Grellier J., Kahn A., Trnovec T., Sram R., Schoeters G. A review on the practical application of human biomonitoring in integrated environmental health impact assessment. J. Toxicol. Environ. Health. B Crit. Rev. 2009;12:107–123. doi: 10.1080/15287390802706397. PubMed DOI
Scheringer M. Persistence and Spatial Range of Environmental Chemicals: New Ethical and Scientific Concepts for Risk Assessment. Wiley; Weinheim, Germany: 2006.
United Nations Sustainable Development Knowledge Platform SDGs: Sustainable Development Goal 3 Ensure Healthy Lives and Promote Well-Being for all at all Ages. [(accessed on 25 July 2018)]; Available online: https://sustainabledevelopment.un.org/sdg3.
OECD’s Environment, Health and Safety Programme. [(accessed on 3 September 2018)]; Available online: http://www.oecd.org/env/ehs/aboutchemicalsafetyandbiosafety.htm.
Covaci A., Den Hond E., Geens T., Govarts E., Koppen G., Frederiksen H., Knudsen L.E., Mørck T.A., Gutleb A.C., Guignard C., et al. Urinary BPA measurements in children and mothers from six European member states: Overall results and determinants of exposure. Environ. Res. 2015;141:77–85. doi: 10.1016/j.envres.2014.08.008. PubMed DOI
Frederiksen H., Nielsen J.K.S., Mørck T.A., Hansen P.W., Jensen J.F., Nielsen O., Andersson A.-M., Knudsen L.E. Urinary excretion of phthalate metabolites, phenols and parabens in rural and urban Danish mother-child pairs. Int. J. Hyg. Environ. Health. 2013;216:772–783. doi: 10.1016/j.ijheh.2013.02.006. PubMed DOI
Mørck T.A., Nielsen F., Nielsen J.K.S., Jensen J.F., Hansen P.W., Hansen A.K., Christoffersen L.N., Siersma V.D., Larsen I.H., Hohlmann L.K., et al. The Danish contribution to the European DEMOCOPHES project: A description of cadmium, cotinine and mercury levels in Danish mother-child pairs and the perspectives of supplementary sampling and measurements. Environ. Res. 2015;141:96–105. doi: 10.1016/j.envres.2014.07.028. PubMed DOI
Gyllenhammar I., Berger U., Sundström M., Lignell S., Aune M., Darnerud P.O., Kotova N., Glynn A. Perfluoroalkyl Acids in Serum from Nursing Women Living in an Area in Sweden with Drinking Water Contamination. Livsmedelsverket; Uppsala, Sweden: 2013.
Jönsson B.A., Axmom A., Lindh C. Tidstrender för Och Halter av Perfluorerade Alkylsyror (PFAAs) i Serum Samt Ftalatmetaboliter Och Alkylfenoler i Urin Hos Unga Svenska Män Och Kvinnor–Resultat Från den Fjärde UppföljningsundersöKningen år 2013. Lunds Universitet; Lund, Sweden: 2014.
Gyllenhammar I., Benskin J.P., Lignell S., Kärsrud A.-S., Sandblom O., Glynn A. Temporal Trends of Poly- and Perfluoroalkyl Substances (PFASs) in Serum from Children at 4, 8, and 12 Years of Age, in Uppsala 2008–2015. Livsmedelsverket; Uppsala, Sweden: 2016.
Apel P., Angerer J., Wilhelm M., Kolossa-Gehring M. New HBM values for emerging substances, inventory of reference and HBM values in force, and working principles of the German Human Biomonitoring Commission. Int. J. Hyg. Environ. Health. 2017;220:152–166. doi: 10.1016/j.ijheh.2016.09.007. PubMed DOI
Kommission Human-Biomonitoring des Umweltbundesamtes Stoffmonographie bisphenol-A (BPA)—Referenz- und Human-Biomonitoring-(HBM)-Werte für BPA im Urin. Bundesgesundheitsbl. 2012;9:1215–1231. PubMed
Umweltbundesamtes Ableitung von HBM-I-Werten für Perfluoroktansäure (PFOA) und Perfluoroktansulfonsäure (PFOS) Stellungnahme der Kommission “Humanbiomonitoring” des Umweltbundesamts. Bundesgesundheitsbl. 2018;61:474–487. PubMed
America’s Children and the Environment Biomonitoring. [(accessed on 3 September 2018 2018)]; Available online: https://www.epa.gov/ace/ace-biomonitoring.
EEA Human Biomonitoring Scoping Documents. [(accessed on 3 September 2018)]; Available online: https://www.eea.europa.eu/themes/human/human-biomonitoring/scoping-documents-for-the-prioritised-substances/view.
ECHA ECHA/PR/17/14: One New Substance Added to the Candidate List, Several Entries Updated. [(accessed on 3 September 2018)]; Available online: https://echa.europa.eu/de/-/one-new-substance-added-to-the-candidate-list.
ECHA Candidate List of Substances of Very High Concern for Authorisation (Published in Accordance with Article 59(10) of the REACH Regulation) [(accessed on 3 September 2018)]; Available online: https://echa.europa.eu/nl/candidate-list-table.
ECHA Committee for Risk Assessment (RAC) Opinion on an Annex XV Dossier Proposing Restrictions on Perfluorooctanoic acid (PFOA), its Salts and PFOA-Related Substances ECHA/RAC/RES-O-0000006229-70-02/F Adopted 8 September 2015. [(accessed on 3 September 2018)]; Available online: https://echa.europa.eu/documents/10162/3d13de3a-de0d-49ae-bfbd-749aea884966.
Völkel W., Genzel-Boroviczény O., Demmelmair H., Gebauer C., Koletzko B., Twardella D., Raab U., Fromme H. Perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid (PFOA) in human breast milk: Results of a pilot study. Int. J. Hyg. Environ. Health. 2008;211:440–446. doi: 10.1016/j.ijheh.2007.07.024. PubMed DOI
DEMOCOPHES. [(accessed on 3 September 2018)]; Available online: http://www.eu-hbm.info/democophes.
Poulson O.M., Holst E., Christensen J.M. Calculation and application of coverage intervals for biological reference values (Technical Report) Pure Appl. Chem. 1997;69:1601–1612. doi: 10.1351/pac199769071601. DOI
Krafft M.P., Riess J.G. Per- and polyfluorinated substances (PFASs): Environmental challenges. Curr. Opin. Colloid Interface Sci. 2015;20:192–212. doi: 10.1016/j.cocis.2015.07.004. DOI
Gomis M.I., Wang Z., Scheringer M., Cousins I.T. A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Sci. Total Environ. 2015;505:981–991. doi: 10.1016/j.scitotenv.2014.10.062. PubMed DOI
Segnestam L.M. Environmental Performance Indicators: A Second Edition Note. World Bank; Washington, DC, USA: 1999.
Knol A. Health and Environment: Assessing the Impacts, Adressing the Uncertainties, Utrecht University, the Netherlands. [(accessed on 3 September 2018)]; Available online: https://dspace.library.uu.nl/handle/1874/42397.
Lebret E. Integrated Environmental Health Impact Assessment for Risk Governance Purposes; Across What Do We Integrate? Int. J. Environ. Res. Public Health. 2015;13:71. doi: 10.3390/ijerph13010071. PubMed DOI PMC
Hays S.M., Aylward L.L., LaKind J.S., Bartels M.J., Barton H.A., Boogaard P.J., Brunk C., DiZio S., Dourson M., Goldstein D.A., et al. Guidelines for the derivation of Biomonitoring Equivalents: Report from the Biomonitoring Equivalents Expert Workshop. Regul. Toxicol. Pharmacol. 2008;51:41. doi: 10.1016/j.yrtph.2008.05.004. PubMed DOI
Summit Toxicology. [(accessed on 3 September 2018)]; Available online: www.summittoxicology.com.
Buekers J., Colles A., Cornelis C., Van Den Heuvel R., Schoeters G. Ontwikkeling van Milieu-Indicatoren Gebaseerd op Humane Biomonitoringsresultaten in Vlaanderen. VMM; Aalst, Belgium: 2017.
Joas A., Schöpel M., David M., Casas M., Koppen G., Esteban M., Knudsen L.E., Vrijheid M., Schoeters G., Calvo A.C., et al. Environmental health surveillance in a future European health information system. Arch. Public Health. 2018;76:27. doi: 10.1186/s13690-018-0272-6. PubMed DOI PMC
BRIDGE HEALTH—Bridiging Information and Data Generation for Evidence-Based Health Policy and Research. [(accessed on 3 September 2018)]; Available online: http://www.bridge-health.eu/
NORMAN—Network of Reference Laboratories, Research Centres and Related Organisations for Monitoring of Emerging Environmental Substances. [(accessed on 3 September 2018)]; Available online: https://www.norman-network.net/?q=Home. PubMed
Arnold S.M., Angerer J., Boogaard P.J., Hughes M.F., O’Lone R.B., Robison S.H., Schnatter A.R. The use of biomonitoring data in exposure and human health risk assessment: Benzene case study. Crit. Rev. Toxicol. 2013;43:119–153. doi: 10.3109/10408444.2012.756455. PubMed DOI PMC
Landrigan P.J., Fuller R., Acosta N.J.R., Adeyi O., Arnold R., Basu N., Baldé A.B., Bertollini R., Bose-O’Reilly S., Boufford J.I., et al. The Lancet Commission on pollution and health. Lancet. 2018;391:462–512. doi: 10.1016/S0140-6736(17)32345-0. PubMed DOI
Dong Z., Bahar M.M., Jit J., Kennedy B., Priestly B., Ng J., Lamb D., Liu Y., Duan L., Naidu R. Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid. Environ. Int. 2017;105:86–94. doi: 10.1016/j.envint.2017.05.006. PubMed DOI
Lilienthal H., Dieter H.H., Hölzer J., Wilhelm M. Recent experimental results of effects of perfluoroalkyl substances in laboratory animals—Relation to current regulations and guidance values. Int. J. Hyg. Environ. Health. 2017;220:766–775. doi: 10.1016/j.ijheh.2017.03.001. PubMed DOI
Alexander J., Atli Auðunsson G., Benford D., Cockburn A., Cravedi J.-P., Dogliotti E., Di Domenico A., Fernández-Cruz M.L., Fink-Gremmels J., Fürst P., et al. Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain, Question no. EFSA-Q-2004-163. EFSA J. 2008;21:1–131. PubMed PMC
Mackay K., Schwerdtle T., Barregard L., Haug L. Dioxin Conference 2018: EFSA Special Session—EFSA Risk Assessments of Persistent Organic Pollutants in Food and Feed: PFOS/PFOA in food: Main conclusions of the EFSA risk assessment, use of epidemiological data, human biomonitoring. In Krakow, 2018. [(accessed on 3 September 2018)]; Available online: http://dioxin2018.org/wp-content/uploads/2018/08/Programme-Dioxin-2018-1.pdf.
EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) Knutsen H.K., Alexander J., Barregård L., Bignami M., Brϋschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Edler L., et al. Risk to Human Health Related to the Presence of Perfluorooctane Sulfonic Acid and Perfluorooctanoic Acid in Food. 2018. PubMed PMC
EEA Digest of EEA Indicators 2014. [(accessed on 3 September 2018)]; Available online: https://www.eea.europa.eu/publications/digest-of-eea-indicators-2014.
EEA Environmental Indicator Report 2017. [(accessed on 3 September 2018)]; Available online: https://www.eea.europa.eu/publications/environmental-indicator-report-2017.
WHO ENHIS Database. [(accessed on 3 September 2018)]; Available online: http://www.euro.who.int/en/data-and-evidence/environment-and-health-information-system-enhis/enhis-database.
ECHI European Core Health Indicators. [(accessed on 3 September 2018)]; Available online: https://ec.europa.eu/health/indicators_data/indicators_en.
IPCHEM EU Information Platform for Chemical Monitoring. [(accessed on 3 September 2018)]; Available online: https://ipchem.jrc.ec.europa.eu/RDSIdiscovery/ipchem/index.html.
European Parliament Fact Sheets on the European Union. [(accessed on 3 September 2018)]; Available online: http://www.europarl.europa.eu/factsheets/en/sheet/49/public-health.
Bopp S.K., Barouki R., Brack W., Dalla Costa S., Dorne J.-L.C.M., Drakvik P.E., Faust M., Karjalainen T.K., Kephalopoulos S., van Klaveren J., et al. Current EU research activities on combined exposure to multiple chemicals. Environ. Int. 2018;120:544–562. doi: 10.1016/j.envint.2018.07.037. PubMed DOI PMC
Sarigiannis D.A., Hansen U. Considering the cumulative risk of mixtures of chemicals—A challenge for policy makers. Environ. Health. 2012;11:S18. doi: 10.1186/1476-069X-11-S1-S18. PubMed DOI PMC
Bourguignon J.-P., Parent A.-S., Kleinjans J.C.S., Nawrot T.S., Schoeters G., Van Larebeke N. Rationale for Environmental Hygiene towards global protection of fetuses and young children from adverse lifestyle factors. Environ. Health. 2018;17:42. doi: 10.1186/s12940-018-0385-y. PubMed DOI PMC