Human biomonitoring of essential and toxic trace elements (heavy metals and metalloids) in urine of children, teenagers, and young adults from a Central European Cohort in the Czech Republic
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39414997
DOI
10.1038/s41370-024-00724-4
PII: 10.1038/s41370-024-00724-4
Knihovny.cz E-zdroje
- Klíčová slova
- Heavy metals, Human biomonitoring, Human exposure, Trace elements, Urine,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Exposure to toxic trace elements, which include metals and metalloids, can induce adverse health effects, including life-threatening diseases. Conversely, essential trace elements are vital for bodily functions, yet their excessive (or inadequate) intake may pose health risks. Therefore, identifying levels and determinants of exposure to trace elements is crucial for safeguarding human health. METHODS: The present study analyzed urinary concentrations of 14 trace elements (arsenic, cadmium, cobalt, chromium, copper, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, and zinc) and their exposure determinants in 711 individuals, spanning from children to young adults from a Central European population from the Czech Republic. Multivariate linear regression and non-parametric Kruskal-Wallis ANOVA were used to investigate exposure determinants. Estimates of 95th percentile concentrations and confidence intervals were carried out to establish reference values (RV95). The study also assessed the percentage of population exceeding health-based guidance values (GVs) to gauge health risks. RESULTS: Young adults showed elevated toxic element concentrations, whereas children exhibited higher concentrations of essential elements. Mercury concentrations were associated with both dental amalgam filling count and seafood intake; arsenic concentrations were associated with seafood, rice, and mushroom consumption. Mushroom consumption also influenced lead concentrations. Sex differences were found for cadmium, zinc, nickel, and cobalt. Between 17.9% and 25% of the participants exceeded recommended GV for arsenic, while 2.4% to 2.8% exceeded GV for cadmium. Only one participant exceeded the GV for mercury, and none exceeded GVs for chromium and thallium. Essential trace elements' GVs were surpassed by 38% to 68.5% participants for zinc, 1.3% to 1.8% for molybdenum, and 0.2% to 0.3% for selenium. IMPACT: The present study examines trace element exposure in a Central European population from the Czech Republic, unveiling elevated exposure levels of toxic elements in young adults and essential elements in children. It elucidates key determinants of trace element exposure, including dietary and lifestyle indicators as well as dental amalgam fillings. Additionally, the study establishes novel reference values and a comparison with established health-based human biomonitoring guidance values, which are crucial for public health decision-making. This comprehensive biomonitoring study provides essential data to inform public health policies and interventions.
Faculty of Sports Studies Masaryk university Kamenice 753 5 Brno Czech Republic
Institute of Biogeochemistry and Pollutant Dynamics ETH Zürich 8092 Zürich Switzerland
RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno Czech Republic
Zobrazit více v PubMed
Vogel N, Murawski A, Schmied-Tobies MIH, Rucic E, Doyle U, Kämpfe A, et al. Lead, cadmium, mercury, and chromium in urine and blood of children and adolescents in Germany – Human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Int J Hyg Environ Health. 2021;237:113822. PubMed DOI
El-Kady AA, Abdel-Wahhab MA. Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci Technol. 2018;75:36–45. DOI
Plum LM, Rink L. Hajo H. The essential toxin: Impact of zinc on human health. Int J Environ Res Public Health. 2010;7:1342–65. PubMed DOI PMC
Kim K, Melough MM, Vance TM, Noh H, Koo SI, Chun OK. Dietary cadmium intake and sources in the US. Nutrients. 2019;11:1–10.
Sunderland EM, Li M, Bullard K. Erratum: “Decadal Changes in the Edible Supply of Seafood and Methylmercury Exposure in the United States. Environ Health Perspect. 2018;126:029003. PubMed DOI PMC
Godebo TR, Stoner H, Kodsup P, Bases B, Marzoni S, Weil J. et al. Occurrence of heavy metals coupled with elevated levels of essential elements in chocolates: Health risk assessment. Food Res. 2024;187:114360. https://doi.org/10.1016/j.foodres.2024.114360 DOI
Gao J, Zhang D, Proshad R, Uwiringiyimana E, Wang Z. Assessment of the pollution levels of potential toxic elements in urban vegetable gardens in southwest China. Sci Rep. 2021;11:1–13. Available from: https://doi.org/10.1038/s41598-021-02069-6 . DOI
WHO. Trace elements in human nutrition and health. Geneva; 1996.
Bhattacharya PT, Misra SR, Hussain M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Sci (Cairo). 2016;2016:5464373.
Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK. A review on role of essential trace elements in health and disease. J Dr NTR Univ Heal Sci. 2015;4:75. DOI
Waseem A, Arshad J. A review of Human Biomonitoring studies of trace elements in Pakistan. Chemosphere. 2016;163:153–76. PubMed DOI
Cooper RG, Harrison AP. The exposure to and health effects of antimony. Indian J Occup Env Med. 2009;13:3–10. DOI
Peter ALJ, Viraraghavan T. Thallium: A review of public health and environmental concerns. Environ Int. 2005;31:493–501. PubMed DOI
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Molecular, clinical and environmental toxicicology Volume 3: Environmental Toxicology. Mol Clin Environ Toxicol [Internet]. 2012;101:133–64. Available from: https://doi.org/10.1007/978-3-7643-8340-4 . DOI
WHO. 10 chemicals of public health concern. 2022.
Al osman M, Yang F, Massey IY. Exposure routes and health effects of heavy metals on children. BioMetals. 2019;32:563–73. PubMed DOI
Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharm. 2021;12:1–19. DOI
Rivera-Núñez Z, Ashrap P, Barrett ES, Watkins DJ, Cathey AL, Vélez-Vega CM, et al. Association of biomarkers of exposure to metals and metalloids with maternal hormones in pregnant women from Puerto Rico. Environ Int. 2021;147:106310. PubMed DOI
Esteban López M, Göen T, Mol H, Nübler S, Haji-Abbas-Zarrabi K, Koch HM, et al. The European human biomonitoring platform - Design and implementation of a laboratory quality assurance/quality control (QA/QC) programme for selected priority chemicals. Int J Hyg Environ Health. 2021;234:113740. PubMed DOI
Gilles L, Govarts E, Rodriguez ML, Andersson A-M, Appenzeller BMR, Barbone F, et al. Harmonization of Human Biomonitoring Studies in Europe: Characteristics of the HBM4EU-Aligned Studies Participants. Int J Environ Res Public Health. 2022;19:6787. PubMed DOI PMC
Marx-Stoelting P, Rivière G, Luijten M, Aiello-Holden K, Bandow N, Baken K, et al. A walk in the PARC: developing and implementing 21st century chemical risk assessment in Europe. Arch Toxicol [Internet]. 2023;97:893–908. https://doi.org/10.1007/s00204-022-03435-7 . PubMed DOI
Ougier E, Ganzleben C, Lecoq P, Bessems J, David M, Schoeters G, et al. Chemical prioritisation strategy in the European Human Biomonitoring Initiative (HBM4EU) – Development and results. Int J Hyg Environ Health. 2021;236:113778. PubMed DOI
Puklová V, Batáriová A, Černá M, Kotlík B, Kratzer K, Melicherčík J, et al. Cadmium exposure pathways in the Czech urban population. Cent Eur J Public Health. 2005;13:11–9. PubMed
Fucic A, Plavec D, Casteleyn L, Aerts D, Biot P, Katsonouri A, et al. Gender differences in cadmium and cotinine levels in prepubertal children. Environ Res. 2015;141:125–31. PubMed DOI
de Burbure C, Buchet J-P, Leroyer A, Nisse C, Haguenoer J-M, Mutti A, et al. Renal and Neurologic Effects of Cadmium, Lead, Mercury, and Arsenic in Children: Evidence of Early Effects and Multiple Interactions at Environmental Exposure Levels. Environ Health Perspect. 2006;114:584–90. PubMed DOI
Batáriová A, Spěváčková V, Beneš B, Čejchanová M, Šmíd J, Černá M. Blood and urine levels of Pb, Cd and Hg in the general population of the Czech Republic and proposed reference values. Int J Hyg Environ Health. 2006;209:359–66. PubMed DOI
Černá M, Spěváčková V, Batáriová A, Šmíd J, Čejchanová M, Očadlíková D, et al. Human biomonitoring system in the Czech Republic. Int J Hyg Environ Health. 2007;210:495–9. PubMed DOI
Černá M, Krsková A, Čejchanová M, Spěváčková V. Human biomonitoring in the Czech Republic: An overview. Int J Hyg Environ Health. 2012;215:109–19. PubMed DOI
NIPH. ENVIRONMENTAL HEALTH MONITORING SYSTEM-Summary report 2022 [Internet]. Prague; 2023. Available from: https://szu.cz/wp-content/uploads/2024/01/Summary_report_2022.pdf .
Snoj Tratnik J, Kocman D, Horvat M, Andersson AM, Juul A, Jacobsen E, et al. Cadmium exposure in adults across Europe: Results from the HBM4EU Aligned Studies survey 2014–2020. Int J Hyg Environ Health. 2022;246:114050. PubMed DOI
Govarts E, Gilles L, Rodriguez ML, Santonen T, Apel P, Alvito P, et al. Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021). Int J Hyg Environ Health. 2023;249:114119. PubMed DOI
Piler P, Kandrnal V, Kukla L, Andrýsková L, Švancara J, Jarkovský J, et al. Cohort Profile: The European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. Int J Epidemiol. 2016;46:dyw091.
Dereziński P, Klupczyńska A, Sawicki W, Kokot ZJ. Creatinine determination in urine by liquid chromatography-electrospray ionization-tandem mass spectrometry method. Acta Pol Pharm. 2016;73:303–13. PubMed
Wang B, Tang C, Wang H, Zhou W, Chen Y, Zhou Y, et al. Influence of body mass index status on urinary creatinine and specific gravity for epidemiological study of children. Eur J Pediatr. 2015;174:1481–9. PubMed DOI
Carrieri M, Trevisan A, Bartolucci GB. Adjustment to concentration-dilution of spot urine samples: Correlation between specific gravity and creatinine. Int Arch Occup Environ Health. 2000;74:63–7. DOI
Sauvé J-F, Lévesque M, Huard M, Drolet D, Lavoué J, Tardif R, et al. Creatinine and Specific Gravity Normalization in Biological Monitoring of Occupational Exposures. J Occup Environ Hyg. 2015;12:123–9. PubMed DOI
Hoopmann M, Murawski A, Schümann M, Göen T, Apel P, Vogel N, et al. A revised concept for deriving reference values for internal exposures to chemical substances and its application to population-representative biomonitoring data in German children and adolescents 2014–2017 (GerES V). Int J Hyg Environ Health. 2023;253:114236. PubMed DOI
Saravanabhavan G, Werry K, Walker M, Haines D, Malowany M, Khoury C. Human biomonitoring reference values for metals and trace elements in blood and urine derived from the Canadian Health Measures Survey 2007–2013. Int J Hyg Environ Health [Internet]. 2017;220:189–200. https://doi.org/10.1016/j.ijheh.2016.10.006 . PubMed DOI
ATSDR. Public Health Statement: Manganese. 2012.
Bae H-S, Ryu D-Y, Choi B-S, Park J-D. Urinary Arsenic Concentrations and their Associated Factors in Korean Adults. Toxicol Res. 2013;29:137–42. PubMed DOI PMC
Saoudi A, Zeghnoun A, Bidondo M-L, Garnier R, Cirimele V, Persoons R, et al. Urinary arsenic levels in the French adult population: The French National Nutrition and Health Study, 2006–2007. Sci Total Environ. 2012;433:206–15. PubMed DOI
Minichilli F, Bianchi F, Ronchi A, Gorini F, Bustaffa E. Urinary Arsenic in Human Samples from Areas Characterized by Natural or Anthropogenic Pollution in Italy. Int J Environ Res Public Health. 2018;15:299. PubMed DOI PMC
Eick SM, Steinmaus C. Arsenic and Obesity: a Review of Causation and Interaction. Curr Environ Heal Rep. 2020;7:343–51. DOI
Mridha D, Gorain PC, Joardar M, Das A, Majumder S, De A, et al. Rice grain arsenic and nutritional content during post harvesting to cooking: A review on arsenic bioavailability and bioaccessibility in humans. Food Res Int. 2022;154:111042. PubMed DOI
González N, Calderón J, Rúbies A, Bosch J, Timoner I, Castell V, et al. Dietary exposure to total and inorganic arsenic via rice and rice-based products consumption. Food Chem Toxicol. 2020;141:111420. PubMed DOI
Buekers J, Baken K, Govarts E, Martin LR, Vogel N, Kolossa-Gehring M, et al. Human urinary arsenic species, associated exposure determinants and potential health risks assessed in the HBM4EU Aligned Studies. Int J Hyg Environ Health. 2023;248:114115. PubMed DOI
Menon M, Sarkar B, Hufton J, Reynolds C, Reina SV, Young S. Do arsenic levels in rice pose a health risk to the UK population? Ecotoxicol Environ Saf. 2020;197:110601. PubMed DOI
Kaňa A, Koplík R, Braeuer S, Goessler W, Mestek O. Analysis of Main Arsenic Species in Canned Fish Marketed in the Czech Republic and Austria. J Food Chem Nanotechnol. 2018;04:10–17.
Khosravi-Darani K, Rehman Y, Katsoyiannis I, Kokkinos E, Zouboulis A. Arsenic Exposure via Contaminated Water and Food Sources. Water. 2022;14:1884. DOI
Järup L, Åkesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharm [Internet]. 2009;238:201–8. Available from: https://doi.org/10.1016/j.taap.2009.04.020 . DOI
Den Hond E, Govarts E, Willems H, Smolders R, Casteleyn L, Kolossa-Gehring M, et al. First Steps toward Harmonized Human Biomonitoring in Europe: Demonstration Project to Perform Human Biomonitoring on a European Scale. Environ Health Perspect. 2015;123:255–63. DOI
Lee BK, Kim Y. Sex-specific profiles of blood metal levels associated with metal-iron interactions. Saf Health Work. 2014;5:113–7. PubMed DOI PMC
Ganguly K, Levänen B, Palmberg L, Åkesson A, Lindén A. Cadmium in tobacco smokers: a neglected link to lung disease? Eur Respir Rev. 2018;27:170122. PubMed DOI PMC
Nordberg GF, Nogawa K, Nordberg M Cadmium. In: Handbook on the Toxicology of Metals. Elsevier; 2015. p. 667–716.
Bartel-Steinbach M, Lermen D, Gwinner F, Schäfer M, Göen T, Conrad A, et al. Long-term monitoring of mercury in young German adults: Time trend analyses from the German Environmental Specimen Bank, 1995–2018. Environ Res. 2022;207:112592. PubMed DOI
Astolfi ML, Vitali M, Marconi E, Martellucci S, Mattei V, Canepari S, et al. Urinary Mercury Levels and Predictors of Exposure among a Group of Italian Children. Int J Environ Res Public Health. 2020;17:9225. PubMed DOI PMC
Li H, Lin X, Zhao J, Cui L, Wang L, Gao Y, et al. Intestinal Methylation and Demethylation of Mercury. Bull Environ Contam Toxicol. 2019;102:597–604. PubMed DOI
Puklová V, Krsková A, Černá M, Čejchanová M, Řehůřková I, Ruprich J, et al. The mercury burden of the Czech population: An integrated approach. Int J Hyg Environ Health. 2010;213:243–51. PubMed DOI
Barbosa F, Tanus-Santos JE, Gerlach RF, Parsons PJ. A critical review of biomarkers used for monitoring human exposure to lead: Advantages, limitations, and future needs. Environ Health Perspect. 2005;113:1669–74. PubMed DOI PMC
Sallsten G, Ellingsen DG, Berlinger B, Weinbruch S, Barregard L. Variability of lead in urine and blood in healthy individuals. Environ Res [Internet]. 2022;212:113412. https://doi.org/10.1016/j.envres.2022.113412 . PubMed DOI
Kim JH, Lee A, Kim SK, Moon HB, Park J, Choi K, et al. Lead and mercury levels in repeatedly collected urine samples of young children: A longitudinal biomonitoring study. Environ Res [Internet]. 2020;189:109901 Available from: https://doi.org/10.1016/j.envres.2020.109901 . PubMed DOI
Orywal K, Socha K, Nowakowski P, Zon W, Kaczynski P, Mroczko B, et al. Health risk assessment of exposure to toxic elements resulting from consumption of dried wild-grown mushrooms available for sale. PLoS One. 2021;16:1–15. DOI
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;760–72. PubMed DOI PMC
Tchounwou PB, Yedjou CG, Udensi UK, Pacurari M, Stevens JJ, Patlolla AK, et al. State of the science review of the health effects of inorganic arsenic: Perspectives for future research. Environ Toxicol. 2019;34:188–202. PubMed DOI
Fatima G, Raza AM, Hadi N, Nigam N, Mahdi AA. Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian J Clin Biochem. 2019;34:371–8. PubMed DOI PMC
Sharma BM, Sáňka O, Kalina J, Scheringer M. An overview of worldwide and regional time trends in total mercury levels in human blood and breast milk from 1966 to 2015 and their associations with health effects. Environ Int. 2019;125:300–19. PubMed DOI
Schulz C, Angerer J, Ewers U, Kolossa-Gehring M. The German Human Biomonitoring Commission. Int J Hyg Environ Health. 2007;210:373–82. PubMed DOI
Lamkarkach F, Ougier E, Garnier R, Viau C, Kolossa-Gehring M, Lange R, et al. Human biomonitoring initiative (HBM4EU): Human biomonitoring guidance values (HBM-GVs) derived for cadmium and its compounds. Environ Int [Internet]. 2021;147:106337. https://doi.org/10.1016/j.envint.2020.106337 . PubMed DOI
Hays SM, Aylward LL, Gagné M, Nong A, Krishnan K. Biomonitoring Equivalents for inorganic arsenic. Regul Toxicol Pharm. 2010;58:1–9. DOI
ATSDR. Toxicological Profile for Arsenic. Georgia; 2007.
Buekers J, David M, Koppen G, Bessems J, Scheringer M, Lebret E, et al. Development of Policy Relevant Human Biomonitoring Indicators for Chemical Exposure in the European Population. Int J Environ Res Public Health. 2018;15:2085. PubMed DOI PMC
Schulz C, Wilhelm M, Heudorf U, Kolossa-Gehring M. Reprint of “ Update of the reference and HBM values derived by the German Human Biomonitoring Commission.”. Int J Hyg Environ Health [Internet]. 2012;215:150–8. Available from: https://doi.org/10.1016/j.ijheh.2012.01.003 . PubMed DOI
Schulz C, Angerer J, Ewers U, Heudorf U, Wilhelm M. Revised and new reference values for environmental pollutants in urine or blood of children in Germany derived from the German Environmental Survey on Children 2003-2006 (GerES IV). Int J Hyg Environ Health. 2009;212:637–47. PubMed DOI
Wilhelm M, Ewers U, Schulz C. Revised and new reference values for some trace elements in blood and urine for human biomonitoring in environmental medicine. Int J Hyg Environ Health. 2004;207:69–73. PubMed DOI
Hoet P, Jacquerye C, Deumer G, Lison D, Haufroid V. Reference values and upper reference limits for 26 trace elements in the urine of adults living in Belgium. Clin Chem Lab Med. 2013;51:839–49. PubMed DOI
Lee JW, Lee CK, Moon CS, Choi IJ, Lee KJ, Yi S-M, et al. Korea National Survey for Environmental Pollutants in the Human Body 2008: Heavy metals in the blood or urine of the Korean population. Int J Hyg Environ Health. 2012;215:449–57. PubMed DOI
UNESCO. The International Standard Classification of Education (ISCED). 5. Montreal, Quebec, Canada: Prospects; 2012.
ANSES. Valeurs limites d’exposition en milieu professionnel. Évaluation des indicateurs biologiques d’exposition et recommandation de valeurs biologiques pour le chrome VI et ses composés. Rapport d’expertise collective. 2017.
Verdonck J, Duca RC, Galea KS, Iavicoli I, Poels K, Töreyin ZN, et al. Systematic review of biomonitoring data on occupational exposure to hexavalent chromium. Int J Hyg Environ Health. 2021;236:113799. PubMed DOI
HBM Commission. Stoffmonographie Thallium - Referenz- und Human-Biomonitoring-(HBM)-Werte für Thallium im Urin. Stellungnahme der Kommission “Human-Biomonitoring” des Umweltbundesamtes. Bundesgesundheitsbl. 2011;54:516–24.
Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology. 2017;387:43–56. PubMed DOI
Drysdale M Human Biomonitoring of and Determinants of Biomarker Levels for Contaminants and Nutrients in Old Crow, Yukon Territory. University of Waterloo; 2022.
Hays SM, Macey K, Poddalgoda D, Lu M, Nong A, Aylward LL. Biomonitoring Equivalents for molybdenum. Regul Toxicol Pharm [Internet]. 2016;77:223–9. https://doi.org/10.1016/j.yrtph.2016.03.004 . DOI
Hays SM, Macey K, Nong A, Aylward LL. Biomonitoring Equivalents for selenium. Regul Toxicol Pharm [Internet]. 2014;70:333–9. Available from: https://doi.org/10.1016/j.yrtph.2014.07.017 . DOI
Poddalgoda D, Macey K, Hancock S. Derivation of biomonitoring equivalents (BE values)for zinc. Regul Toxicol Pharm [Internet]. 2019;10:178–86. Available from: https://doi.org/10.1016/j.yrtph.2019.04.018 . DOI