Quantitative 3D Analysis of Coronary Wall Morphology in Heart Transplant Patients: OCT-Assessed Cardiac Allograft Vasculopathy Progression
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 EB004640
NIBIB NIH HHS - United States
PubMed
30253306
PubMed Central
PMC6237624
DOI
10.1016/j.media.2018.09.003
PII: S1361-8415(18)30698-4
Knihovny.cz E-zdroje
- Klíčová slova
- CAV prediction, CAV progression, Cardiac allograft vasculopathy (CAV), LOGISMOS, optical coherence tomography (OCT),
- MeSH
- alografty MeSH
- časové faktory MeSH
- koronární cévy patologie MeSH
- lidé MeSH
- optická koherentní tomografie MeSH
- transplantace srdce * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Cardiac allograft vasculopathy (CAV) accounts for about 30% of all heart-transplant (HTx) patient deaths. For patients at high risk for CAV complications after HTx, therapy must be initiated early to be effective. Therefore, new phenotyping approaches are needed to identify such HTx patients at the earliest possible time. Coronary optical coherence tomography (OCT) images were acquired from 50 HTx patients 1 and 12 months after HTx. Quantitative analysis of coronary wall morphology used LOGISMOS segmentation strategy to simultaneously identify three wall-layer surfaces for the entire pullback length in 3D: luminal, outer intimal, and outer medial surfaces. To quantify changes of coronary wall morphology between 1 and 12 months after HTx, the two pullbacks were mutually co-registered. Validation of layer thickness measurements showed high accuracy of performed layer analyses with layer thickness measures correlating well with manually-defined independent standard (Rautomated2 = 0.93, y=1.0x-6.2μm), average intimal+medial thickness errors were 4.98 ± 31.24 µm, comparable with inter-observer variability. Quantitative indices of coronary wall morphology 1 month and 12 months after HTx showed significant local as well as regional changes associated with CAV progression. Some of the newly available fully-3D baseline indices (intimal layer brightness, medial layer brightness, medial thickness, and intimal+medial thickness) were associated with CAV-related progression of intimal thickness showing promise of identifying patients subjected to rapid intimal thickening at 12 months after HTx from OCT-image data obtained just 1 month after HTx. Our approach allows quantification of location-specific alterations of coronary wall morphology over time and is sensitive even to very small changes of wall layer thicknesses that occur in patients following heart transplant.
Institute of Clinical and Experimental Medicine Prague Czech Republic
Iowa Institute for Biomedical Imaging The University of Iowa Iowa City IA 52242 USA
Zobrazit více v PubMed
Bom N, Lancee CT, 1972. Apparatus for ultrasonically examining a hollow organ. UK Patent 1402192.
Chandran KB, Wahle A, Vigmostad SC, Olszewski ME, Rossen JD, Sonka M, 2006. Coronary arteries: Imaging, reconstruction, and fluid dynamic analysis. Critical Reviews in Biomedical Engineering 34, 23–103. PubMed
Chen Z, Wahle A, Guo Z, Zhang H, Karmazin V, Tomasek A, Bedanova H, Lopez JJ, Kovarnik T, Pazdernik M, Sonka M, 2017. Highly automated analysis of intimal and medial thickness in heart-transplant coronary OCT facilitates longitudinal studies of CAV progression. The Journal of Heart and Lung Transplantation 36, S155.
Chih S, Chong AY, Mielniczuk LM, Bhatt DL, Beanlands RS, 2016. Allograft Vasculopathy: The Achilles’ Heel of Heart Transplantation. J. Am. Coll. Cardiol. 68, 80–91. PubMed
Clemmensen TS, Holm NR, Eiskjær H, Jakobsen L, Berg K, Neghabat O, Løgstrup BB, Christiansen EH, Dijkstra J, Terkelsen CJ, et al., 2018. Detection of early changes in the coronary artery microstructure after heart transplantation: A prospective optical coherence tomography study. The Journal of Heart and Lung Transplantation 37, 486–495. PubMed
Clemmensen TS, Holm NR, Eiskjær H, Løgstrup BB, Christiansen EH, Dijkstra J, Barkholt TØ, Terkelsen CJ, Maeng M, Poulsen SH, 2017. Layered Fibrotic Plaques Are the Predominant Component in Cardiac Allograft Vasculopathy: Systematic Findings and Risk Stratification by OCT. JACC Cardiovasc Imaging 10, 773–784. PubMed
Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito C, Fujimoto J, 1991. Optical Coherence Tomography. Science 254, 1178–1181. PubMed PMC
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T, 2014. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 .
Kashyap S, Zhang H, Rao K, Sonka M, 2018. Learning-based cost functions for 3-d and 4-d multi-surface multi-object segmentation of knee mri: Data from the osteoarthritis initiative. IEEE transactions on medical imaging 37, 1103–1113. PubMed PMC
Kohli P, Torr PH, 2007. Dynamic graph cuts for efficient inference in Markov Random Fields. IEEE Trans. Pattern Anal. 29, 2079–2088. PubMed
Li K, Wu X, Chen DZ, Sonka M, 2006. Optimal surface segmentation in volumetric images-a graph-theoretic approach. IEEE Trans. Pattern Anal. 28, 119–134. PubMed PMC
Liu S, Eggermont J, Wolterbeek R, Broersen A, Busk CA, Precht H, Lelieveldt BP, Dijkstra J, 2016. Analysis and compensation for the effect of the catheter position on image intensities in intravascular optical coherence tomography. Journal of biomedical optics 21, 126005. PubMed
Mehra MR, Ventura HO, Stapleton DD, Smart FW, Collins TC, Ramee SR, 1995. Presence of severe intimal thickening by intravascular ultrasonography predicts cardiac events in cardiac allograft vasculopathy. J. Heart Lung Transplant. 14, 632–639. PubMed
Oguz I, Sonka M, 2014. LOGISMOS-B: layered optimal graph image segmentation of multiple objects and surfaces for the brain. IEEE Trans Med Imaging 33, 1220–1235. PubMed PMC
Olender ML, Athanasiou LS, José M, Camarero TG, Cascón JD, Consuegra-Sanchez L, Edelman ER, 2017. Estimating the internal elastic membrane cross-sectional area of coronary arteries autonomously using optical coherence tomography images, in: Biomedical & Health Informatics (BHI), 2017 IEEE EMBS International Conference on, IEEE; pp. 109–112.
Pazdernik M, Kovarnik T, Chen Z, Wahle A, Karmazin V, Melenovsky V, Kautzner J, Tomasek A, Bedanova H, Sonka M, 2017a. Increased heart rate after heart transplant is not associated with early progression of cardiac allograft vasculopathy (CAV) — a prospective study using highly automatic coronary optical coherence tomography segmentation software in 3D. The Journal of Heart and Lung Transplantation 36, S297–S298.
Pazdernik M, Kovarnik T, Sonka M, Wahle A, Chen Z, Karmazin V, Kautzner J, Tomasek A, Melenovsky V, Bedanova H, 2017b. Should we pharmacologically modulate renin-aldosterone-angiotensin system (RAAS) to attenuate cardiac allograft vasculopathy (CAV)? A prospective study using highly automated coronary optical coherence tomography segmentation software in 3D. The Journal of Heart and Lung Transplantation 36, S292.
R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: URL: https://www.R-project.org.
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y, 2013. Over-feat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 .
Sharif-Razavian A, Azizpour H, Sullivan J, Carlsson S, 2014. CNN features off-the-shelf: An astounding baseline for recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshops, pp. 806–813.
Slager CJ, Wentzel JJ, Schuurbiers JC, Oomen JA, Kloet J, Krams R, von Birgelen C, van der Giessen WJ, Serruys PW, de Feyter PJ, 2000. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102, 511–516. PubMed
Sones FM, Shirey EK, 1962. Cine coronary arteriography. Mod Concepts Cardiovasc Dis 31, 735–738. PubMed
Sonka M, Abramoff MD, 2016. Quantitative analysis of retinal OCT. Med Image Anal 33, 165–169. PubMed
Starling RC, Stehlik J, Baran DA, Armstrong B, Stone JR, Ikle D, Morrison Y, Bridges ND, Putheti P, Strom TB, Bhasin M, Guleria I, Chandraker A, Sayegh M, Daly KP, Briscoe DM, Heeger PS, 2016. Multicenter Analysis of Immune Biomarkers and Heart Transplant Outcomes: Results of the Clinical Trials in Organ Transplantation-05 Study. Am. J. Transplant 16, 121–136. PubMed PMC
Stone PH, Coskun AU, Kinlay S, Popma JJ, Sonk a.M., Wahle A, Yeghiazarians Y, Maynard C, Kuntz RE, Feldman CL, 2007. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur Heart J 28, 705–710. PubMed
Sun S, Sonka M, Beichel RR, 2013. Graph-based IVUS segmentation with efficient computer-aided refinement. IEEE Trans Med Imaging 32, 1536–1549. PubMed PMC
Tsutsui H, Ziada KM, Schoenhagen P, Iyisoy A, Magyar WA, Crowe TD, Klingensmith JD, Vince DG, Rincon G, Hobbs RE, Yamagishi M, Nissen SE, Tuzcu EM, 2001. Lumen loss in transplant coronary artery disease is a biphasic process involving early intimal thickening and late constrictive remodeling: results from a 5-year serial intravascular ultrasound study. Circulation 104, 653–657. PubMed
Wahle A, Lopez JJ, Olszewski ME, Vigmostad SC, Chandran KB, Rossen JD, Sonka M, 2006. Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by x-ray angiography and intravascular ultrasound. Medical Image Analysis 10, 615–631. PubMed PMC
Wahle A, Prause GP, von Birgelen C, Erbel R, Sonka M, 1999a. Fusion of angiography and intravascular ultrasound in vivo: establishing the absolute 3-D frame orientation. IEEE Trans Biomed Eng 46, 1176–1180. PubMed
Wahle A, Prause PM, DeJong SC, Sonka M, 1999b. Geometrically correct 3-D reconstruction of intravascular ultrasound images by fusion with biplane angiography–methods and validation. IEEE Trans Med Imaging 18, 686–699. PubMed
Wever-Pinzon O, Romero J, Kelesidis I, Wever-Pinzon J, Manrique C, Budge D, Drakos SG, Pina IL, Kfoury AG, Garcia MJ, Stehlik J, 2014. Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy: A meta-analysis of prospective trials. J. Am. Coll. Cardiol. 63, 1992–2004. PubMed
Woo V, Chen Z, Hirai T, Weber JR, Kovarnik T, Wahle A, Sonka M, Lopez JJ, 2015. [TCT-355] An automated computational method for quantification of total fibrous cap volume and mean fibrous cap thickness with optical coherence tomography. Journal of the American College of Cardiology 15, B143–B144.
Yin Y, Zhang X, Williams R, Wu X, Anderson D, Sonka M, 2010. LOGISMOS-Layered optimal graph image segmentation of multiple objects and surfaces: Cartilage segmentation in the knee joint. IEEE Trans. Med. Imaging 29, 2023–2037. PubMed PMC
Zahnd G, Hoogendoorn A, Combaret N, Karanasos A, Péry E, Sarry L, Motreff P, Niessen W, Regar E, Van Soest G, et al., 2017. Contour segmentation of the intima, media, and adventitia layers in intracoronary oct images: application to fully automatic detection of healthy wall regions. International journal of computer assisted radiology and surgery 12, 1923–1936. PubMed PMC
Zhang L, Wahle A, Chen Z, Zhang L, Downe RW, Kovarnik T, Sonka M, 2015. Simultaneous registration of location and orientation in intravascular ultrasound pullbacks pairs via 3D graph-based optimization. IEEE Transactions on Medical Imaging 34, 2550–2561. doi:10.1109/TMI.2015.2444815. PubMed DOI PMC