Fibrous Cap Thickness Predicts Stable Coronary Plaque Progression: Early Clinical Validation of a Semiautomated OCT Technology

. 2022 Sep-Oct ; 1 (5) : . [epub] 20220713

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36397766

Grantová podpora
R01 EB004640 NIBIB NIH HHS - United States
R01 HL063373 NHLBI NIH HHS - United States
T35 HL120835 NHLBI NIH HHS - United States

BACKGROUND: Imaging-based characteristics associated with the progression of stable coronary atherosclerotic lesions are poorly defined. Utilizing a combination of optical coherence tomography (OCT) and intravascular ultrasound (IVUS) imaging, we aimed to characterize the lesions prone to progression through clinical validation of a semiautomated OCT computational program. METHODS: Patients with stable coronary artery disease underwent nonculprit vessel imaging with IVUS and OCT at baseline and IVUS at the 12-month follow-up. After coregistration of baseline and follow-up IVUS images, paired 5-mm segments from each patient were identified, demonstrating the greatest plaque progression and regression as measured by the change in plaque burden. Experienced readers identified plaque features on corresponding baseline OCT segments, and predictors of plaque progression were assessed by multivariable analysis. Each segment then underwent volumetric assessment of the fibrous cap (FC) using proprietary software. RESULTS: Among 23 patients (70% men; median age, 67 years), experienced-reader analysis demonstrated that for every 100 μm increase in mean FC thickness, plaques were 87% less likely to progress (P = .01), which persisted on multivariable analysis controlling for baseline plaque burden (P = .05). Automated FC analysis (n = 17 paired segments) confirmed this finding (P = .01) and found thinner minimal FC thickness (P = .01) and larger FC surface area of <65 μm (P = .02) and <100 μm (P = .04) in progressing segments than in regressing segments. No additional imaging features predicted plaque progression. CONCLUSIONS: A semiautomated FC analysis tool confirmed the significant association between thinner FC and stable coronary plaque progression along entire vessel segments, illustrating the diffuse nature of FC thinning and suggesting a future clinical role in predicting the progression of stable coronary artery disease.

Zobrazit více v PubMed

Nicholls S.J., Hsu A., Wolski K., et al. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol. 2010;55(21):2399–2407. PubMed

Stone P.H., Saito S., Takahashi S., et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. Circulation. 2012;126(2):172–181. PubMed

Stone G.W., Maehara A., Lansky A.J., et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–235. PubMed

Tian J., Ren X., Vergallo R., et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J Am Coll Cardiol. 2014;63(21):2209–2216. PubMed

Nissen S.E., Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103(4):604–616. PubMed

Diletti R., García-García H.M., Gomez-Lara J., et al. Assessment of coronary atherosclerosis progression and regression at bifurcations using combined IVUS and OCT. JACC Cardiovasc Imaging. 2011;4(7):774–780. PubMed

Hou J., Xing L., Jia H., et al. Comparison of intensive versus moderate lipid-lowering therapy on fibrous cap and atheroma volume of coronary lipid-rich plaque using serial optical coherence tomography and intravascular ultrasound imaging. Am J Cardiol. 2016;117(5):800–806. PubMed

Takarada S., Imanishi T., Kubo T., et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009;202(2):491–497. PubMed

Bourantas C.V., Räber L., Sakellarios A., et al. Utility of multimodality intravascular imaging and the local hemodynamic forces to predict atherosclerotic disease progression. JACC Cardiovasc Imaging. 2020;13(4):1021–1032. PubMed

Räber L., Koskinas K.C., Yamaji K., et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with high-intensity statin therapy (IBIS-4): a serial optical coherence tomography study. JACC Cardiovasc Imaging. 2019;12(8 Pt 1):1518–1528. PubMed

Radu M.D., Yamaji K., García-García H.M., et al. Variability in the measurement of minimum fibrous cap thickness and reproducibility of fibroatheroma classification by optical coherence tomography using manual versus semi-automatic assessment. EuroIntervention. 2016;12(8):e987–e997. PubMed

Nakajima A., Minami Y., Araki M., et al. Optical coherence tomography predictors for a favorable vascular response to statin therapy. J Am Heart Assoc. 2021;10(1) PubMed PMC

Sun S., Sonka M., Beichel R.R. Graph-based IVUS segmentation with efficient computer-aided refinement. IEEE Trans Med Imaging. 2013;32(8):1536–1549. PubMed PMC

Yin Y., Zhang X., Williams R., Wu X., Anderson D.D., Sonka M. LOGISMOS—layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans Med Imaging. 2010;29(12):2023–2037. PubMed PMC

Zhang L., Wahle A., Chen Z., et al. Simultaneous registration of location and orientation in intravascular ultrasound pullbacks pairs via 3D graph-based optimization. IEEE Trans Med Imaging. 2015;34(12):2550–2561. PubMed PMC

Wahle A., Prause P.M., DeJong S.C., Sonka M. Geometrically correct 3-D reconstruction of intravascular ultrasound images by fusion with biplane angiography—methods and validation. IEEE Trans Med Imaging. 1999;18(8):686–699. PubMed

Mintz G.S., Nissen S.E., Anderson W.D., et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2001;37(5):1478–1492. PubMed

Murray S.W., Stables R.H., García-García H.M., et al. Construction and validation of a plaque discrimination score from the anatomical and histological differences in coronary atherosclerosis: the Liverpool IVUS-V-HEART (Intra Vascular UltraSound-Virtual-Histology Evaluation of Atherosclerosis Requiring Treatment) study. EuroIntervention. 2014;10(7):815–823. PubMed

Tearney G.J., Regar E., Akasaka T., et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol. 2012;59(12):1058–1072. PubMed

Jang I.K., Tearney G.J., MacNeill B., et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–1555. PubMed PMC

Yabushita H., Bouma B.E., Houser S.L., et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106(13):1640–1645. PubMed

Barlis P., Serruys P.W., Gonzalo N., van der Giessen W.J., de Jaegere P.J., Regar E. Assessment of culprit and remote coronary narrowings using optical coherence tomography with long-term outcomes. Am J Cardiol. 2008;102(4):391–395. PubMed

Schaar J.A., de Korte C.L., Mastik F., et al. Characterizing vulnerable plaque features with intravascular elastography. Circulation. 2003;108(21):2636–2641. PubMed

Brown A.J., Obaid D.R., Costopoulos C., et al. Direct comparison of virtual-histology intravascular ultrasound and optical coherence tomography imaging for identification of thin-cap fibroatheroma. Circ Cardiovasc Imaging. 2015;8(10) PubMed PMC

Yonetsu T., Kakuta T., Lee T., et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32(10):1251–1259. PubMed

Tearney G.J. OCT imaging of macrophages: a bright spot in the study of inflammation in human atherosclerosis. JACC Cardiovasc Imaging. 2015;8(1):73–75. PubMed

van Soest G., Regar E., Goderie T.P.M., et al. Pitfalls in plaque characterization by OCT: image artifacts in native coronary arteries. JACC Cardiovasc Imaging. 2011;4(7):810–813. PubMed

Chen Z., Pazdernik M., Zhang H., et al. Quantitative 3D analysis of coronary wall morphology in heart transplant patients: OCT-assessed cardiac allograft vasculopathy progression. Med Image Anal. 2018;50:95–105. PubMed PMC

Pazdernik M., Chen Z., Bedanova H., et al. Early detection of cardiac allograft vasculopathy using highly automated 3-dimensional optical coherence tomography analysis. J Heart Lung Transplant. 2018;37(8):992–1000. PubMed

Kato K., Yonetsu T., Kim S.J., et al. Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. JACC Cardiovasc Interv. 2012;5(11):1150–1158. PubMed

Uemura S., Ishigami K.I., Soeda T., et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J. 2012;33(1):78–85. PubMed

Ito K., Yamagishi M., Yasumura Y., Nakatani S., Yasuda S., Miyatake K. Impact of coronary artery remodeling on misinterpretation of angiographic disease eccentricity: evidence from intravascular ultrasound. Int J Cardiol. 1999;70(3):275–282. PubMed

Isner J.M., Kishel J., Kent K.M., Ronan J.A., Ross A.M., Roberts W.C. Accuracy of angiographic determination of left main coronary arterial narrowing. Angiographic--histologic correlative analysis in 28 patients. Circulation. 1981;63(5):1056–1064. PubMed

Nissen S.E., Tuzcu E.M., Schoenhagen P., et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291(9):1071–1080. PubMed

Nissen S.E., Tsunoda T., Tuzcu E.M., et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290(17):2292–2300. PubMed

Fishbein M.C., Siegel R.J. How big are coronary atherosclerotic plaques that rupture? Circulation. 1996;94(10):2662–2666. PubMed

Cheruvu P.K., Finn A.V., Gardner C., et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol. 2007;50(10):940–949. PubMed

Hattori K., Ozaki Y., Ismail T.F., et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS. JACC Cardiovasc Imaging. 2012;5(2):169–177. PubMed

Nissen S.E., Nicholls S.J., Sipahi I., et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295(13):1556–1565. PubMed

Burke A.P., Kolodgie F.D., Farb A., et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103(7):934–940. PubMed

Vergallo R., Porto I., D’Amario D., et al. Coronary atherosclerotic phenotype and plaque healing in patients with recurrent acute coronary syndromes compared with patients with long-term clinical stability: an in vivo optical coherence tomography study. JAMA Cardiol. 2019;4(4):321–329. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...