Fibrous Cap Thickness Predicts Stable Coronary Plaque Progression: Early Clinical Validation of a Semiautomated OCT Technology
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 EB004640
NIBIB NIH HHS - United States
R01 HL063373
NHLBI NIH HHS - United States
T35 HL120835
NHLBI NIH HHS - United States
PubMed
36397766
PubMed Central
PMC9668070
DOI
10.1016/j.jscai.2022.100400
PII: 100400
Knihovny.cz E-zdroje
- Klíčová slova
- coronary artery disease, intravascular ultrasound, optical coherence tomography,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Imaging-based characteristics associated with the progression of stable coronary atherosclerotic lesions are poorly defined. Utilizing a combination of optical coherence tomography (OCT) and intravascular ultrasound (IVUS) imaging, we aimed to characterize the lesions prone to progression through clinical validation of a semiautomated OCT computational program. METHODS: Patients with stable coronary artery disease underwent nonculprit vessel imaging with IVUS and OCT at baseline and IVUS at the 12-month follow-up. After coregistration of baseline and follow-up IVUS images, paired 5-mm segments from each patient were identified, demonstrating the greatest plaque progression and regression as measured by the change in plaque burden. Experienced readers identified plaque features on corresponding baseline OCT segments, and predictors of plaque progression were assessed by multivariable analysis. Each segment then underwent volumetric assessment of the fibrous cap (FC) using proprietary software. RESULTS: Among 23 patients (70% men; median age, 67 years), experienced-reader analysis demonstrated that for every 100 μm increase in mean FC thickness, plaques were 87% less likely to progress (P = .01), which persisted on multivariable analysis controlling for baseline plaque burden (P = .05). Automated FC analysis (n = 17 paired segments) confirmed this finding (P = .01) and found thinner minimal FC thickness (P = .01) and larger FC surface area of <65 μm (P = .02) and <100 μm (P = .04) in progressing segments than in regressing segments. No additional imaging features predicted plaque progression. CONCLUSIONS: A semiautomated FC analysis tool confirmed the significant association between thinner FC and stable coronary plaque progression along entire vessel segments, illustrating the diffuse nature of FC thinning and suggesting a future clinical role in predicting the progression of stable coronary artery disease.
Zobrazit více v PubMed
Nicholls S.J., Hsu A., Wolski K., et al. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol. 2010;55(21):2399–2407. PubMed
Stone P.H., Saito S., Takahashi S., et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. Circulation. 2012;126(2):172–181. PubMed
Stone G.W., Maehara A., Lansky A.J., et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–235. PubMed
Tian J., Ren X., Vergallo R., et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J Am Coll Cardiol. 2014;63(21):2209–2216. PubMed
Nissen S.E., Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103(4):604–616. PubMed
Diletti R., García-García H.M., Gomez-Lara J., et al. Assessment of coronary atherosclerosis progression and regression at bifurcations using combined IVUS and OCT. JACC Cardiovasc Imaging. 2011;4(7):774–780. PubMed
Hou J., Xing L., Jia H., et al. Comparison of intensive versus moderate lipid-lowering therapy on fibrous cap and atheroma volume of coronary lipid-rich plaque using serial optical coherence tomography and intravascular ultrasound imaging. Am J Cardiol. 2016;117(5):800–806. PubMed
Takarada S., Imanishi T., Kubo T., et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009;202(2):491–497. PubMed
Bourantas C.V., Räber L., Sakellarios A., et al. Utility of multimodality intravascular imaging and the local hemodynamic forces to predict atherosclerotic disease progression. JACC Cardiovasc Imaging. 2020;13(4):1021–1032. PubMed
Räber L., Koskinas K.C., Yamaji K., et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with high-intensity statin therapy (IBIS-4): a serial optical coherence tomography study. JACC Cardiovasc Imaging. 2019;12(8 Pt 1):1518–1528. PubMed
Radu M.D., Yamaji K., García-García H.M., et al. Variability in the measurement of minimum fibrous cap thickness and reproducibility of fibroatheroma classification by optical coherence tomography using manual versus semi-automatic assessment. EuroIntervention. 2016;12(8):e987–e997. PubMed
Nakajima A., Minami Y., Araki M., et al. Optical coherence tomography predictors for a favorable vascular response to statin therapy. J Am Heart Assoc. 2021;10(1) PubMed PMC
Sun S., Sonka M., Beichel R.R. Graph-based IVUS segmentation with efficient computer-aided refinement. IEEE Trans Med Imaging. 2013;32(8):1536–1549. PubMed PMC
Yin Y., Zhang X., Williams R., Wu X., Anderson D.D., Sonka M. LOGISMOS—layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans Med Imaging. 2010;29(12):2023–2037. PubMed PMC
Zhang L., Wahle A., Chen Z., et al. Simultaneous registration of location and orientation in intravascular ultrasound pullbacks pairs via 3D graph-based optimization. IEEE Trans Med Imaging. 2015;34(12):2550–2561. PubMed PMC
Wahle A., Prause P.M., DeJong S.C., Sonka M. Geometrically correct 3-D reconstruction of intravascular ultrasound images by fusion with biplane angiography—methods and validation. IEEE Trans Med Imaging. 1999;18(8):686–699. PubMed
Mintz G.S., Nissen S.E., Anderson W.D., et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2001;37(5):1478–1492. PubMed
Murray S.W., Stables R.H., García-García H.M., et al. Construction and validation of a plaque discrimination score from the anatomical and histological differences in coronary atherosclerosis: the Liverpool IVUS-V-HEART (Intra Vascular UltraSound-Virtual-Histology Evaluation of Atherosclerosis Requiring Treatment) study. EuroIntervention. 2014;10(7):815–823. PubMed
Tearney G.J., Regar E., Akasaka T., et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol. 2012;59(12):1058–1072. PubMed
Jang I.K., Tearney G.J., MacNeill B., et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–1555. PubMed PMC
Yabushita H., Bouma B.E., Houser S.L., et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106(13):1640–1645. PubMed
Barlis P., Serruys P.W., Gonzalo N., van der Giessen W.J., de Jaegere P.J., Regar E. Assessment of culprit and remote coronary narrowings using optical coherence tomography with long-term outcomes. Am J Cardiol. 2008;102(4):391–395. PubMed
Schaar J.A., de Korte C.L., Mastik F., et al. Characterizing vulnerable plaque features with intravascular elastography. Circulation. 2003;108(21):2636–2641. PubMed
Brown A.J., Obaid D.R., Costopoulos C., et al. Direct comparison of virtual-histology intravascular ultrasound and optical coherence tomography imaging for identification of thin-cap fibroatheroma. Circ Cardiovasc Imaging. 2015;8(10) PubMed PMC
Yonetsu T., Kakuta T., Lee T., et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32(10):1251–1259. PubMed
Tearney G.J. OCT imaging of macrophages: a bright spot in the study of inflammation in human atherosclerosis. JACC Cardiovasc Imaging. 2015;8(1):73–75. PubMed
van Soest G., Regar E., Goderie T.P.M., et al. Pitfalls in plaque characterization by OCT: image artifacts in native coronary arteries. JACC Cardiovasc Imaging. 2011;4(7):810–813. PubMed
Chen Z., Pazdernik M., Zhang H., et al. Quantitative 3D analysis of coronary wall morphology in heart transplant patients: OCT-assessed cardiac allograft vasculopathy progression. Med Image Anal. 2018;50:95–105. PubMed PMC
Pazdernik M., Chen Z., Bedanova H., et al. Early detection of cardiac allograft vasculopathy using highly automated 3-dimensional optical coherence tomography analysis. J Heart Lung Transplant. 2018;37(8):992–1000. PubMed
Kato K., Yonetsu T., Kim S.J., et al. Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. JACC Cardiovasc Interv. 2012;5(11):1150–1158. PubMed
Uemura S., Ishigami K.I., Soeda T., et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J. 2012;33(1):78–85. PubMed
Ito K., Yamagishi M., Yasumura Y., Nakatani S., Yasuda S., Miyatake K. Impact of coronary artery remodeling on misinterpretation of angiographic disease eccentricity: evidence from intravascular ultrasound. Int J Cardiol. 1999;70(3):275–282. PubMed
Isner J.M., Kishel J., Kent K.M., Ronan J.A., Ross A.M., Roberts W.C. Accuracy of angiographic determination of left main coronary arterial narrowing. Angiographic--histologic correlative analysis in 28 patients. Circulation. 1981;63(5):1056–1064. PubMed
Nissen S.E., Tuzcu E.M., Schoenhagen P., et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291(9):1071–1080. PubMed
Nissen S.E., Tsunoda T., Tuzcu E.M., et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290(17):2292–2300. PubMed
Fishbein M.C., Siegel R.J. How big are coronary atherosclerotic plaques that rupture? Circulation. 1996;94(10):2662–2666. PubMed
Cheruvu P.K., Finn A.V., Gardner C., et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol. 2007;50(10):940–949. PubMed
Hattori K., Ozaki Y., Ismail T.F., et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS. JACC Cardiovasc Imaging. 2012;5(2):169–177. PubMed
Nissen S.E., Nicholls S.J., Sipahi I., et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295(13):1556–1565. PubMed
Burke A.P., Kolodgie F.D., Farb A., et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103(7):934–940. PubMed
Vergallo R., Porto I., D’Amario D., et al. Coronary atherosclerotic phenotype and plaque healing in patients with recurrent acute coronary syndromes compared with patients with long-term clinical stability: an in vivo optical coherence tomography study. JAMA Cardiol. 2019;4(4):321–329. PubMed PMC