Unraveling connectivity changes due to dopaminergic therapy in chronically treated Parkinson's disease patients
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30254336
PubMed Central
PMC6156510
DOI
10.1038/s41598-018-31988-0
PII: 10.1038/s41598-018-31988-0
Knihovny.cz E-zdroje
- MeSH
- agonisté dopaminu farmakologie terapeutické užití MeSH
- časové faktory MeSH
- dopamin metabolismus MeSH
- levodopa farmakologie terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- nervová síť účinky léků patologie patofyziologie MeSH
- Parkinsonova nemoc diagnostické zobrazování farmakoterapie patologie patofyziologie MeSH
- počítačové zpracování obrazu MeSH
- studie případů a kontrol MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- agonisté dopaminu MeSH
- dopamin MeSH
- levodopa MeSH
The effects of dopaminergic therapy for Parkinson's disease (PD) on the brain functional architecture are still unclear. We investigated this topic in 31 PD patients (disease duration: 11.2 ± (SD) 3.6 years) who underwent clinical and MRI assessments under chronic dopaminergic treatment (duration: 8.3 ± (SD) 4.4 years) and after its withdrawal. Thirty healthy controls were also included. Functional and morphological changes were studied, respectively, with eigenvector centrality mapping and seed-based connectivity, and voxel-based morphometry. Patients off medication, compared to controls, showed increased connectivity in cortical sensorimotor areas extending to the cerebello-thalamo-cortical pathway and parietal and frontal brain structures. Dopaminergic therapy normalized this increased connectivity. Notably, patients showed decreased interconnectedness in the medicated compared to the unmedicated condition, encompassing putamen, precuneus, supplementary motor and sensorimotor areas bilaterally. Similarly, lower connectivity was found comparing medicated patients to controls, overlapping with the within-group comparison in the putamen. Seed-based analyses revealed that dopaminergic therapy reduced connectivity in motor and default mode networks. Lower connectivity in the putamen correlated with longer disease duration, medication dose, and motor symptom improvement. Notably, atrophy and connectivity changes were topographically dissociated. After chronic treatment, dopaminergic therapy decreases connectivity of key motor and default mode network structures that are abnormally elevated in PD off condition.
Clinic for Cognitive Neurology University Clinic Leipzig Germany
Department of Neurology Charles University Prague 1st Faculty of Medicine Prague Czech Republic
Department of Radiology Na Homolce Hospital Prague Czech Republic
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
Zobrazit více v PubMed
de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. The Lancet Neurology. 2006;5:525–535. doi: 10.1016/s1474-4422(06)70471-9. PubMed DOI
Schapira AH. Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol. 2013;26:395–400. doi: 10.1097/WCO.0b013e3283633741. PubMed DOI PMC
Braak H, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003;24:197–211. doi: 10.1016/S0197-4580(02)00065-9. PubMed DOI
Warren JD, Rohrer JD, Hardy J. Disintegrating brain networks: from syndromes to molecular nexopathies. Neuron. 2012;73:1060–1062. doi: 10.1016/j.neuron.2012.03.006. PubMed DOI PMC
Warren JD, et al. Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends Neurosci. 2013;36:561–569. doi: 10.1016/j.tins.2013.06.007. PubMed DOI PMC
LeWitt PA. Levodopa for the treatment of Parkinson’s disease. The New England Journal of Medicine. 2008;359:2468–2476. doi: 10.1056/NEJMct0800326. PubMed DOI
Aquino CC, Fox SH. Clinical spectrum of levodopa-induced complications. Mov Disord. 2015;30:80–89. doi: 10.1002/mds.26125. PubMed DOI
Vijayakumar D, Jankovic JD-I. Dyskinesia, Part 1: Treatment of Levodopa-Induced Dyskinesia. Drugs. 2016;76:759–777. doi: 10.1007/s40265-016-0566-3. PubMed DOI
Tahmasian M, et al. A systematic review on the applications of resting-state fMRI in Parkinson’s disease: Does dopamine replacement therapy play a role? Cortex. 2015;73:80–105. doi: 10.1016/j.cortex.2015.08.005. PubMed DOI
Berman BD, et al. Levodopa modulates small-world architecture of functional brain networks in Parkinson’s disease. Mov Disord. 2016;31:1676–1684. doi: 10.1002/mds.26713. PubMed DOI PMC
Gao LL, Zhang JR, Chan P, Wu T. Levodopa Effect on Basal Ganglia Motor Circuit in Parkinson’s Disease. CNS Neurosci Ther. 2017;23:76–86. doi: 10.1111/cns.12634. PubMed DOI PMC
Kwak Y, et al. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front Syst Neurosci. 2010;4:143. doi: 10.3389/fnsys.2010.00143. PubMed DOI PMC
Kwak Y, et al. L-DOPA changes spontaneous low-frequency BOLD signal oscillations in Parkinson’s disease: a resting state fMRI study. Front Syst Neurosci. 2012;6:52. doi: 10.3389/fnsys.2012.00052. PubMed DOI PMC
Szewczyk-Krolikowski K, et al. Functional connectivity in the basal ganglia network differentiates PD patients from controls. Neurology. 2014;83:208–214. doi: 10.1212/WNL.0000000000000592. PubMed DOI PMC
Vo A, et al. Parkinson’s disease-related network topographies characterized with resting state functional MRI. Hum Brain Mapp. 2017;38:617–630. doi: 10.1002/hbm.23260. PubMed DOI PMC
Wu T, et al. Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp. 2009;30:1502–1510. doi: 10.1002/hbm.20622. PubMed DOI PMC
Wu T, et al. Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci Lett. 2009;460:6–10. doi: 10.1016/j.neulet.2009.05.046. PubMed DOI
Esposito F, et al. Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson’s disease by levodopa. Brain. 2013;136:710–725. doi: 10.1093/brain/awt007. PubMed DOI
Wu T, et al. Basal ganglia circuits changes in Parkinson’s disease patients. Neurosci Lett. 2012;524:55–59. doi: 10.1016/j.neulet.2012.07.012. PubMed DOI PMC
Jech R, Mueller K, Schroeter ML, Ruzicka E. Levodopa increases functional connectivity in the cerebellum and brainstem in Parkinson’s disease. Brain. 2013;136:e234. doi: 10.1093/brain/awt015. PubMed DOI
Lohmann G, et al. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One. 2010;5:e10232. doi: 10.1371/journal.pone.0010232. PubMed DOI PMC
Brin S, Page L. Reprint of: The anatomy of large-scale hypertextual web search engine. Computer networks. 2012;58:3825–3833. doi: 10.1016/j.comnet.2012.10.007. DOI
Zappia M, et al. Long-Duration Response to Levodopa Influences the Pharmacodynamics of Short-Duration Response in Parkinson’s Disease. Annals of Neurology. 1997;42:245–248. doi: 10.1002/ana.410420217. PubMed DOI
Zhuang X, Mazzoni P, Kang UJ. The role of neuroplasticity in dopaminergic therapy for Parkinson disease. Nat Rev Neurol. 2013;9:248–256. doi: 10.1038/nrneurol.2013.57. PubMed DOI
Reynolds JNJ, Wickens JR. Dopamine-dependent plasticity of corticostriatal synapses. Neural Networks. 2002;15:507–521. doi: 10.1016/S0893-6080(02)00045-X. PubMed DOI
Akram H, et al. l-Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson’s disease. Mov Disord. 2017;32:874–883. doi: 10.1002/mds.27017. PubMed DOI PMC
Wink AM, de Munck JC, van der Werf YD, van den Heuvel OA, Barkhof F. Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connect. 2012;2:265–274. doi: 10.1089/brain.2012.0087. PubMed DOI
Yang W, et al. Altered Resting-State Functional Connectivity of the Striatum in Parkinson’s Disease after Levodopa Administration. PLoS One. 2016;11:e0161935. doi: 10.1371/journal.pone.0161935. PubMed DOI PMC
Lewis MM, et al. Differential involvement of striato- and cerebello-thalamo-cortical pathways in tremor- and akinetic/rigid-predominant Parkinson’s disease. Neuroscience. 2011;177:230–239. doi: 10.1016/j.neuroscience.2010.12.060. PubMed DOI PMC
Sen S, Kawaguchi A, Truong Y, Lewis MM, Huang X. Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson’s disease. Neuroscience. 2010;166:712–719. doi: 10.1016/j.neuroscience.2009.12.036. PubMed DOI PMC
Helmich RC, Janssen MJ, Oyen WJ, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 2011;69:269–281. doi: 10.1002/ana.22361. PubMed DOI
Zhang D, Liu X, Chen J, Liu B, Wang J. Widespread increase of functional connectivity in Parkinson’s disease with tremor: a resting-state FMRI study. Front Aging Neurosci. 2015;7:6. doi: 10.3389/fnagi.2015.00006. PubMed DOI PMC
Tessitore A, et al. Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology. 2012;79:2226–2232. doi: 10.1212/WNL.0b013e31827689d6. PubMed DOI
Zou Q-H, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of neuroscience methods. 2008;172:137–141. doi: 10.1016/j.jneumeth.2008.04.012. PubMed DOI PMC
Tahmasian M, et al. Resting-state functional reorganization in Parkinson’s disease: An activation likelihood estimation meta-analysis. Cortex. 2017;92:119–138. doi: 10.1016/j.cortex.2017.03.016. PubMed DOI PMC
Costa RM, et al. Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron. 2006;52:359–369. doi: 10.1016/j.neuron.2006.07.030. PubMed DOI
Wang M, et al. Altered neuronal activity in the primary motor cortex and globus pallidus after dopamine depletion in rats. J Neurol Sci. 2015;348:231–240. doi: 10.1016/j.jns.2014.12.014. PubMed DOI
Eusebio A, et al. Resonance in subthalamo-cortical circuits in Parkinson’s disease. Brain. 2009;132:2139–2150. doi: 10.1093/brain/awp079. PubMed DOI PMC
Appel-Cresswell S, de la Fuente-Fernandez R, Galley S, McKeown MJ. Imaging of compensatory mechanisms in Parkinson’s disease. Curr Opin Neurol. 2010;23:407–412. doi: 10.1097/WCO.0b013e32833b6019. PubMed DOI
Lou Y, et al. Altered brain network centrality in depressed Parkinson’s disease patients. Mov Disord. 2015;30:1777–1784. doi: 10.1002/mds.26321. PubMed DOI
Jung Kang U, et al. Activity enhances dopaminergic long-duration response in Parkinson disease. Neurology. 2012;78:1146–1149. doi: 10.1212/WNL.0b013e31824f8056. PubMed DOI PMC
Kelly C, et al. L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci. 2009;29:7364–7378. doi: 10.1523/JNEUROSCI.0810-09.2009. PubMed DOI PMC
Saeed U, et al. Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegener. 2017;6:8. doi: 10.1186/s40035-017-0076-6. PubMed DOI PMC
Logothetis NK, Wandell BA. Interpreting the BOLD Signal. Annual Review of Physiology. 2004;66:735–769. doi: 10.1146/annurev.physiol.66.082602.092845. PubMed DOI
Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. Journal of applied physiology. 2006;100:328–335. doi: 10.1152/japplphysiol.00966.2005. PubMed DOI
Phillips AA, Chan FH, Zheng MMZ, Krassioukov AV, Ainslie PN. Neurovascular coupling in humans: Physiology, methodological advances and clinical implications. Journal of Cerebral Blood Flow & Metabolism. 2016;36:647–664. doi: 10.1177/0271678X15617954. PubMed DOI PMC
Rosengarten B, et al. Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment. Journal of Alzheimer’s Disease. 2010;22:415–421. doi: 10.3233/JAD-2010-101140. PubMed DOI
Krainik A, et al. Levodopa does not change cerebral vasoreactivity in Parkinson’s disease. Movement Disorders. 2013;28:469–475. doi: 10.1002/mds.25267. PubMed DOI
Hanby MF, Panerai RB, Robinson TG, Haunton VJ. Is cerebral vasomotor reactivity impaired in Parkinson disease? Clinical Autonomic Research. 2017;27:107–111. doi: 10.1007/s10286-017-0406-x. PubMed DOI
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery & Psychiatry. 1992;55:181. doi: 10.1136/jnnp.55.3.181. PubMed DOI PMC
Tomlinson CL, et al. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25:2649–2653. doi: 10.1002/mds.23429. PubMed DOI
Kopecek M, et al. Montreal cognitive assessment (MoCA): Normative data for old and very old Czech adults. Appl Neuropsychol Adult. 2017;24:23–29. doi: 10.1080/23279095.2015.1065261. PubMed DOI
Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839–851. doi: 10.1016/j.neuroimage.2005.02.018. PubMed DOI
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154. doi: 10.1016/j.neuroimage.2011.10.018. PubMed DOI PMC
Ashburner J, Friston KJ. Voxel-based morphometry–the methods. Neuroimage. 2000;11:805–821. doi: 10.1006/nimg.2000.0582. PubMed DOI
Gorgolewski, K. J. et al. NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Frontiers in Neuroinformatics9, 10.3389/fninf.2015.00008 (2015). PubMed PMC