Molecular Modeling Studies on the Interactions of Aflatoxin B1 and Its Metabolites with Human Acetylcholinesterase. Part II: Interactions with the Catalytic Anionic Site (CAS)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30257474
PubMed Central
PMC6215247
DOI
10.3390/toxins10100389
PII: toxins10100389
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, aflatoxin B1, catalytic anionic site, metabolites,
- MeSH
- acetylcholinesterasa chemie metabolismus MeSH
- aflatoxin B1 chemie metabolismus MeSH
- cholinesterasové inhibitory chemie metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- katalytická doména MeSH
- lidé MeSH
- molekulární modely * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- aflatoxin B1 MeSH
- cholinesterasové inhibitory MeSH
The most common type of aflatoxin (AFT) found in nature is aflatoxin B1 (AFB1). This micotoxin is extremely hepatotoxic and carcinogenic to mammals, with acute and chronic effects. It is believed that this could be related to the capacity of AFB1 and its metabolites in inhibiting the enzyme acetylcholinesterase (AChE). In a previous work, we performed an inedited theoretical investigation on the binding modes of these molecules on the peripheral anionic site (PAS) of human AChE (HssAChE), revealing that the metabolites can also bind in the PAS in the same way as AFB1. Here, we investigated the binding modes of these compounds on the catalytic anionic site (CAS) of HssAChE to compare the affinity of the metabolites for both binding sites as well as verify which is the preferential one. Our results corroborated with experimental studies pointing to AFB1 and its metabolites as mixed-type inhibitors, and pointed to the residues relevant for the stabilization of these compounds on the CAS of HssAChE.
Zobrazit více v PubMed
Shotwell O.L. Aflatoxins. Clin. Microbiol. News. 1983;5:103–105. doi: 10.1016/S0196-4399(83)80117-2. DOI
Bennet J.W., Klich M. Mycotoxins. Clin. Microbiol. Rev. 2003;16:497–516. doi: 10.1128/CMR.16.3.497-516.2003. PubMed DOI PMC
Squire R.A. Ranking animal carcinogens: A proposed regulatory approach. Science. 1989;214:877–880. doi: 10.1126/science.7302565. PubMed DOI
Wu Q., Jezkova A., Yuan Z., Pavlikova L., Dohnal V., Kuca K. Biological degradation of aflatoxins. Drug Metab. Rev. 2009;41:1–7. doi: 10.1080/03602530802563850. PubMed DOI
Hathway D.E. Toxic action/toxicity. Biol. Rev. 2000;75:95–127. doi: 10.1017/S0006323199005447. PubMed DOI
Dohnal V., Wu Q., Kuca K. Metabolism of aflatoxins: Key enzymes and interindividual as well as interspecies differences. Arch. Toxicol. 2014;88:1635–1644. doi: 10.1007/s00204-014-1312-9. PubMed DOI
Soldatkin O.O., Burdak O.S., Sergeyeva T.A., Arkhypova V.M., Dzyadevych S.V., Soldatkin A.P. Acetylcholinesterase-based conductometric biosensor for determination of aflatoxin B1. Sens. Actuator B-Chem. 2013;188:999–1003. doi: 10.1016/j.snb.2013.06.107. DOI
Stepurska K.V., Soldatkin O.O., Arkhypova V.M., Soldatkin A.P., Lagarde F., Jaffrezic-Renault N., Dzyadevych S.V. Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples. Talanta. 2015;144:1079–1084. doi: 10.1016/j.talanta.2015.07.068. PubMed DOI
Egnibuke G.N., Ikegwuonu F.I. Effect of aflatoxicosis on acetylcholinesterase activity in the brain and adenohypophysis on male rat. Neurosci. Lett. 1984;52:171–174. PubMed
Cometa M.F., Lorenzinia P., Fortunaa S., Volpea M.T., Meneguza A., Palmeryb M. In vitro inhibitory effect of aflatoxin B1 on acetylcholinesterase activity in mouse brain. Toxicology. 2005;206:125–135. doi: 10.1016/j.tox.2004.07.009. PubMed DOI
Hansmann T., Sanson B., Stojan J., Weik M., Marty J., Fournier D. Kinetic insight into mechanism of cholinesterase inhibition by aflatoxin B1 to develop biosensors. Biosens. Bioelectron. 2009;24:2119–2124. doi: 10.1016/j.bios.2008.11.006. PubMed DOI
Almeida J.S.F.D., Cavalcante S.F.A., Dolezal R., Kuca K., Musilek K., Jun D., França T.C.C. Molecular modeling studies on the interactions of aflatoxin B1 and its metabolites with the pheripheral anionic site (PAS) of human acetylcholinesterase. J. Biomol. Struct. Dyn. 2018 accepted. PubMed
Sanson B., Colletier J., Xu Y., Lang P.T., Jiang H., Silman I., Sussman J.L., Weik M. Backdoor opening mechanism in acetylcholinesterase based on X-ray crystallography and molecular dynamics simulations. Protein Sci. 2011;20:1114–1118. doi: 10.1002/pro.661. PubMed DOI PMC
Cheung J., Rudolph M.J., Bursthteyn M.S., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI
Hehre W.J., Deppmeier B.J., Klunzinger P.E. PC Spartan Pro molecular modeling for desktop. Chem. Eng. News. 1999;77:2.
Rocha G.B., Freire R.O., Simas A.M., Stewart J.J.P. RM1: A Reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006;27:1101–1111. doi: 10.1002/jcc.20425. PubMed DOI
Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Wallace A.C., Laskowski R.A., Thornton J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1996;8:127–134. doi: 10.1093/protein/8.2.127. PubMed DOI
Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI
Abraham M.J., Murtola T., Schulz R., Pall S., Smith J.C., Hess B., Lindahl E. High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softw. X. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Da Silva A.W.S., Vranken W.F. ACPYPE—Antechamber Python Parser Interface. BMC Res. Notes. 2012;5:367–374. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC
Vranken W.F., Boucher W., Stevens T.J., Vogh R.H., Pajon A., Llinas M., Ulrich E.L., Markley J.L., Ionides J., Laue E.D. The CCPN data model for NMR spectroscopy: Development of a software pipeline. Proteins Struct. Funct. Bioinform. 2005;59:687–696. doi: 10.1002/prot.20449. PubMed DOI
Ribeiro A.A.S.T., Horta B.A.C., de Alencastro R.B. MKTOP: A program for automatic construction of molecular topologies. J. Braz. Chem. Soc. 2008;19:1433–1435. doi: 10.1590/S0103-50532008000700031. DOI
Almeida J.S.F.D., Cuya Guizado T.R., Guimarães A.P., Ramalho T.C., Gonçalves A.S., de Koning M.C., França T.C.C. Docking and molecular dynamics studies of peripheral site ligand-oximes as reactivators of sarin-inhibited human acetylcholinesterase. J. Biomol. Struct. Dyn. 2016;34:2632–2642. doi: 10.1080/07391102.2015.1124807. PubMed DOI
Humphrey W., Dalke A., Schulten K. VMD-Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
DeLano W.L. The PyMOL Molecular Graphics System. DeLano Scientific; San Carlos, CA, USA: 2002.
Kumari R., Kumar R., Lynn A. g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014;54:1951–1962. doi: 10.1021/ci500020m. PubMed DOI