Molecular Modeling Studies on the Interactions of Aflatoxin B1 and Its Metabolites with Human Acetylcholinesterase. Part II: Interactions with the Catalytic Anionic Site (CAS)

. 2018 Sep 25 ; 10 (10) : . [epub] 20180925

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30257474

The most common type of aflatoxin (AFT) found in nature is aflatoxin B1 (AFB1). This micotoxin is extremely hepatotoxic and carcinogenic to mammals, with acute and chronic effects. It is believed that this could be related to the capacity of AFB1 and its metabolites in inhibiting the enzyme acetylcholinesterase (AChE). In a previous work, we performed an inedited theoretical investigation on the binding modes of these molecules on the peripheral anionic site (PAS) of human AChE (HssAChE), revealing that the metabolites can also bind in the PAS in the same way as AFB1. Here, we investigated the binding modes of these compounds on the catalytic anionic site (CAS) of HssAChE to compare the affinity of the metabolites for both binding sites as well as verify which is the preferential one. Our results corroborated with experimental studies pointing to AFB1 and its metabolites as mixed-type inhibitors, and pointed to the residues relevant for the stabilization of these compounds on the CAS of HssAChE.

Zobrazit více v PubMed

Shotwell O.L. Aflatoxins. Clin. Microbiol. News. 1983;5:103–105. doi: 10.1016/S0196-4399(83)80117-2. DOI

Bennet J.W., Klich M. Mycotoxins. Clin. Microbiol. Rev. 2003;16:497–516. doi: 10.1128/CMR.16.3.497-516.2003. PubMed DOI PMC

Squire R.A. Ranking animal carcinogens: A proposed regulatory approach. Science. 1989;214:877–880. doi: 10.1126/science.7302565. PubMed DOI

Wu Q., Jezkova A., Yuan Z., Pavlikova L., Dohnal V., Kuca K. Biological degradation of aflatoxins. Drug Metab. Rev. 2009;41:1–7. doi: 10.1080/03602530802563850. PubMed DOI

Hathway D.E. Toxic action/toxicity. Biol. Rev. 2000;75:95–127. doi: 10.1017/S0006323199005447. PubMed DOI

Dohnal V., Wu Q., Kuca K. Metabolism of aflatoxins: Key enzymes and interindividual as well as interspecies differences. Arch. Toxicol. 2014;88:1635–1644. doi: 10.1007/s00204-014-1312-9. PubMed DOI

Soldatkin O.O., Burdak O.S., Sergeyeva T.A., Arkhypova V.M., Dzyadevych S.V., Soldatkin A.P. Acetylcholinesterase-based conductometric biosensor for determination of aflatoxin B1. Sens. Actuator B-Chem. 2013;188:999–1003. doi: 10.1016/j.snb.2013.06.107. DOI

Stepurska K.V., Soldatkin O.O., Arkhypova V.M., Soldatkin A.P., Lagarde F., Jaffrezic-Renault N., Dzyadevych S.V. Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples. Talanta. 2015;144:1079–1084. doi: 10.1016/j.talanta.2015.07.068. PubMed DOI

Egnibuke G.N., Ikegwuonu F.I. Effect of aflatoxicosis on acetylcholinesterase activity in the brain and adenohypophysis on male rat. Neurosci. Lett. 1984;52:171–174. PubMed

Cometa M.F., Lorenzinia P., Fortunaa S., Volpea M.T., Meneguza A., Palmeryb M. In vitro inhibitory effect of aflatoxin B1 on acetylcholinesterase activity in mouse brain. Toxicology. 2005;206:125–135. doi: 10.1016/j.tox.2004.07.009. PubMed DOI

Hansmann T., Sanson B., Stojan J., Weik M., Marty J., Fournier D. Kinetic insight into mechanism of cholinesterase inhibition by aflatoxin B1 to develop biosensors. Biosens. Bioelectron. 2009;24:2119–2124. doi: 10.1016/j.bios.2008.11.006. PubMed DOI

Almeida J.S.F.D., Cavalcante S.F.A., Dolezal R., Kuca K., Musilek K., Jun D., França T.C.C. Molecular modeling studies on the interactions of aflatoxin B1 and its metabolites with the pheripheral anionic site (PAS) of human acetylcholinesterase. J. Biomol. Struct. Dyn. 2018 accepted. PubMed

Sanson B., Colletier J., Xu Y., Lang P.T., Jiang H., Silman I., Sussman J.L., Weik M. Backdoor opening mechanism in acetylcholinesterase based on X-ray crystallography and molecular dynamics simulations. Protein Sci. 2011;20:1114–1118. doi: 10.1002/pro.661. PubMed DOI PMC

Cheung J., Rudolph M.J., Bursthteyn M.S., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI

Hehre W.J., Deppmeier B.J., Klunzinger P.E. PC Spartan Pro molecular modeling for desktop. Chem. Eng. News. 1999;77:2.

Rocha G.B., Freire R.O., Simas A.M., Stewart J.J.P. RM1: A Reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006;27:1101–1111. doi: 10.1002/jcc.20425. PubMed DOI

Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Wallace A.C., Laskowski R.A., Thornton J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1996;8:127–134. doi: 10.1093/protein/8.2.127. PubMed DOI

Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI

Abraham M.J., Murtola T., Schulz R., Pall S., Smith J.C., Hess B., Lindahl E. High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softw. X. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Da Silva A.W.S., Vranken W.F. ACPYPE—Antechamber Python Parser Interface. BMC Res. Notes. 2012;5:367–374. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC

Vranken W.F., Boucher W., Stevens T.J., Vogh R.H., Pajon A., Llinas M., Ulrich E.L., Markley J.L., Ionides J., Laue E.D. The CCPN data model for NMR spectroscopy: Development of a software pipeline. Proteins Struct. Funct. Bioinform. 2005;59:687–696. doi: 10.1002/prot.20449. PubMed DOI

Ribeiro A.A.S.T., Horta B.A.C., de Alencastro R.B. MKTOP: A program for automatic construction of molecular topologies. J. Braz. Chem. Soc. 2008;19:1433–1435. doi: 10.1590/S0103-50532008000700031. DOI

Almeida J.S.F.D., Cuya Guizado T.R., Guimarães A.P., Ramalho T.C., Gonçalves A.S., de Koning M.C., França T.C.C. Docking and molecular dynamics studies of peripheral site ligand-oximes as reactivators of sarin-inhibited human acetylcholinesterase. J. Biomol. Struct. Dyn. 2016;34:2632–2642. doi: 10.1080/07391102.2015.1124807. PubMed DOI

Humphrey W., Dalke A., Schulten K. VMD-Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

DeLano W.L. The PyMOL Molecular Graphics System. DeLano Scientific; San Carlos, CA, USA: 2002.

Kumari R., Kumar R., Lynn A. g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014;54:1951–1962. doi: 10.1021/ci500020m. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...