Importance of functional classification in the use of carabids for the environmental risk assessment of the GE crops and other agricultural practices
Jazyk angličtina Země Austrálie Médium print-electronic
Typ dokumentu srovnávací studie, hodnotící studie, časopisecké články
Grantová podpora
QH91093
National Agency for Agriculture Research
RVO:60077344
Biology Centre of the Czech Academy of Sciences
L200961652
Biology Centre of the Czech Academy of Sciences
PubMed
30260074
DOI
10.1111/1744-7917.12643
Knihovny.cz E-zdroje
- Klíčová slova
- Cry3Bb1, GE maize, carabid, environmental risk assessment, functional diversity, surrogate species,
- MeSH
- biodiverzita * MeSH
- bioindikátory * MeSH
- brouci * MeSH
- dursban MeSH
- geneticky modifikované rostliny MeSH
- hodnocení rizik metody MeSH
- insekticidy MeSH
- kukuřice setá MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- srovnávací studie MeSH
- Názvy látek
- bioindikátory * MeSH
- dursban MeSH
- insekticidy MeSH
Carabids (Coleoptera: Carabidae) seem to be suitable bioindicators of the environmental impacts of novel agrotechnologies, including deployment of the genetically engineered (GE) crops. In this article, we describe our effort to employ carabids in the environmental risk assessment (ERA). GE maize MON88017, its near-isogenic hybrid nontreated or treated with the soil insecticide chlorpyrifos, and two reference hybrids were used to compare three different ways how to utilize carabids in ERA. The analysis of abundance of all captured carabids or of the most abundant carabid species did not disclose any differences between the treatments. The analysis based on the categories of functional traits revealed distinct features of some treatments and proved suitable for ERA because it permitted field data transportability in spite of different species compositions. Our results indicate that GE maize has no detrimental environmental effect. On the other hand, we found significant trends toward lower abundance and lower species number (including analysis of all carabid species together) in plots treated with the insecticide, and some tendencies to higher abundance and higher species number in plots sown with the reference hybrid PR38N86. Using functional group indicators allows identification of unintended changes in ecological functions of agroecosystem and comparability across geographies. We recommend data evaluation at the level of the categories of functional traits in ERA of GE crops and other agricultural practices.
Czech Academy of Sciences Biology Centre Institute of Entomology České Budějovice Czech Republic
Museum of the Moravian Wallachia Region Vsetín Czech Republic
Zobrazit více v PubMed
Ahmad, A., Negri, I., Oliveira, W., Brown, C., Asiimwe, P., Sammons, B. et al. (2016) Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA. Transgenic Research, 25, 1-17.
Ahmad, A., Wilde, G.E. and Zhu, K.Y. (2005) Detectability of coleopteran-specific Cry3Bb1 protein in soil and its effect on nontarget surface and below-ground arthropods. Environmental Entomology, 34, 385-394.
Al-Deeb, M.A. and Wilde, G.E. (2003) Effect of Bt corn expressing the Cry3Bb1 toxin for corn rootworm control on aboveground nontarget arthropods. Environmental Entomology, 32, 1164-1170.
Arias-Martín, M., García, M., Castañera, P., Ortego, F. and Farinós, G.P. (2018) Farm-scale evaluation of the impact of Cry1Ab Bt maize on canopy nontarget arthropods: a 3-year study. Insect Science, 25, 87-98.
Bhatti, M.A., Duan, J., Head, G., Jiang, C.J., Mckee, M.J., Nickson, T.E. et al. (2005) Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on ground-dwelling invertebrates. Environmental Entomology, 34, 1325-1335.
Brooks, D.R., Bohan, D.A., Champion, G.T., Haughton, A.J., Hawes, C., Heard, M.S. et al. (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Philosophical Transactions of the Royal Society of London B, 358, 1847-1862.
Clough, Y., Kruess, A. and Tscharntke, T. (2007) Organic versus conventional arable farming systems: functional grouping helps understand staphylinid response. Agriculture, Ecosystems and Environment, 118, 285-290.
Colwell, R.K. (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User's Guide and application. http://purl.oclc.org/estimates. Accessed 12 March 2017.
Dunn, O.J. (1961) Multiple comparisons among means. Journal of the American Statistical Association, 56, 52-64.
Duflot, R., Aviron, S. and Burel, F. (2013) Farmland heterogeneity & complementation a case study on carabid beetles. ESA Annual Meeting 2013, Minneapolis, USA. https://www.researchgate.net/profile/Remi_Duflot/publication/264047099_Effects_of_farmland_landscape_heterogeneity_on_biodiversity_is_there_a_spatio-temporal_complementation_between_crop_fields/links/0a85e53cbe6364033e000000/Effects-of-farmland-landscape-heterogeneity-on-biodiversity-is-there-a-spatio-temporal-complementation-between-crop-fields.pdf. Accessed 10 April 2018.
Environmental Protection Agency [EPA]. Scientific Advisory Panel. (2002) Corn rootworm plant-incorporated protectant insect resistance management and non-target insect issues. Transmittal of meeting minutes of the FIFRA Scientific Advisory Panel Meeting August 27-29, 2002 Arlington, VA. https://www.regulations.gov/docketBrowser?rpp=50&po=0&D=EPA-HQ-OPP-2002-0157. Accessed 14 October 2017.
European Commission (2017) EU Register of authorised GMOs. http://ec.europa.eu/food/dyna/gm_register/index_en.cfm. Accessed 17 October 2017.
Food and Agriculture Organization of the United Nations [FAO] (2017) FAOSTAT. http://www.fao.org/faostat/en/#data/QC. Accessed 13 October 2017.
Food and Agriculture Organization of the United Nations [FAO] (2015) World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, pp. 1-192. Update 2015. World soil resources reports. FAO, Rome.
Garcia-Alonso, M., Hendley, P., Bigler, F., Mayeregger, E., Parker, R., Rubinstein, C. et al. (2014) Transportability of confined field trial data for environmental risk assessment of genetically engineered plants: a conceptual framework. Transgenic Research, 23, 1025-1041.
Grabowski, M., Bereś, P.K. and Dąbrowski, Z.T. (2010) Charakterystyka wybranych gatunków biegaczowatych (Coleoptera: Carabidae) pod kątem ich przydatności dla oceny ryzyka i monitoringu uwalniania GMO do środowiska. Progress in Plant Protection, 50, 1602-1606.
GraphPad Software Inc. (2007) GraphPad Prism 5.0 User´s Guide. GraphPad Software Inc., San Diego, CA. https://www.graphpad.com/guides/prism/7/user-guide/index.htm?citing_graphpad_prism.htm. Accessed 19 May 2018.
Guo, J.F., He, K.L., Bai, S.X., Zhang, T.T., Liu, Y.T., Wang, F.X. et al. (2016) Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance, diversity and community composition. Transgenic Research, 25, 761-772.
Harrigan, G.G., Lundry, D., Drury, S., Berman, K., Riordan, S.G., Nemeth, M.A. et al. (2010) Natural variation in crop composition and the impact of transgenesis. Nature Biotechnology, 28, 402-404.
Hatten, T.D., Bosque-Pérez, N.A., Labonte, J.R., Guy, S.O. and Eigenbrode, S.D. (2007) Effects of tillage on the activity density and biological diversity of carabid beetles in spring and winter crops. Environmental Entomology, 36, 356-368.
Hůrka, K. (1996) Carabidae of the Czech and Slovak Republics. Illustrated Key 1. 16 col. Plates, pp. 1-565. Kabourek Publishing, Zlín.
Irmler, U. (2003) The spatial and temporal pattern of carabid beetles on arable fields in northern Germany (Schleswig-Holstein) and their value as ecological indicators. Agriculture, Ecosystems and Environment, 98, 141-151.
International Service for the Acquisition of Agri-biotech Applications [ISAAA]. (2017) Global Status of Commercialized Biotech/GM Crops: 2017. ISAAA Brief No. 53. Ithaca: ISAAA.
Jugenheimer, R.W. (1958) Hybrid maize breeding and seed production. FAO Agricultural Development Paper, 62, 99-103.
Kalushkov, P., Gueorguiev, B., Spitzer, L. and Nedved, O. (2009) Biodiversity of ground beetles (Coleoptera: Carabidae) in genetically modified (Bt) and conventional (non-Bt) potato fields in Bulgaria. Biotechnology and Biotechnological Equipment, 23, 1346-1350.
Larochelle, A. (1990) The food of carabid beetles (Coleoptera: Carabidae, including Cicindelidae). Fabreries Supplement, 5, 1-132.
Lee, M.S. and Albajes, R. (2016) Monitoring carabid indicators could reveal environmental impacts of genetically modified maize. Agricultural and Forest Entomology, 18, 238-249.
Lepš, J. and Šmilauer, P. (2003) Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge. pp. 1-269.
Leslie, T.W., Biddinger, D.J., Rohr, J.R. and Fleischer, S.J. (2010) Conventional and seed-based insect management strategies similarly influence nontarget coleopteran communities in maize. Environmental Entomology, 39, 2045-2055.
Liu, S.M., Li, J., Zhu, J.Q., Wang, X.W., Wang, C.S., Liu, S.S. et al. (2016) Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests. Insect Science, 23, 265-276.
Meissle, M. and Lang, A. (2005) Comparing methods to evaluate the effects of Bt maize and insecticide on spider assemblages. Agriculture, Ecosystems and Environment, 107, 359-370.
Navasero, M.V., Candano, R.N., Hautea, D.M., Hautea, R.A., Shotkoski, F.A. and Shelton, A.M. (2016) Assessing potential impact of Bt egg plants on non-target arthropods in the Philippines. PLoS ONE, 11, e0165190.
Nock, C.A., Vogt, R.J. and Beisner, B.E. (2016) Functional Traits. eLS, pp. 1-8. John Wiley & Sons, Ltd, Chichester.
Oyediran, I.O., Matthews, P., Palekar, N., French, W., Conville, J. and Burd, T. (2016) Susceptibility of northern corn rootworm Diabrotica barberi (Coleoptera: Chrysomelidae) to mCry3A and eCry3.1Ab Bacillus thuringiensis proteins. Insect Science, 23, 913-917.
Priesnitz, K.U., Benker, U. and Schaarschmidt, F. (2013) Assessment of the potential impact of a Bt maize hybrid expressing Cry3Bb1 on ground beetles (Carabidae). Journal of Plant Diseases and Protection, 120, 131-140.
Rauschen, S., Schultheis, E., Pagel-Wieder, S., Schuphan, I. and Eber, S. (2009) Impact of Bt-corn MON88017 in comparison to three conventional lines on Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) field densities. Transgenic Research, 18, 203-214.
Ritchie, S.W., Hanway, J.J. and Benson, G.O. (1992) How a corn plant develops. Special Report No. 48. Iowa State University of Science and Technology, Ames. https://s10.lite.msu.edu/res/msu/botonl/b_online/library/maize/www.ag.iastate.edu/departments/agronomy/corngrows.html#vegetative. Accessed 31 July 2017.
Romeis, J., Meissle, M., Alvarez-Alfageme, F., Bigler, F., Bohan, D.A., Devos, Y. et al. (2014) Potential use of an arthropod database to support the nontarget risk assessment and monitoring of transgenic plants. Transgenic Research, 23, 995-1013.
Sanvido, O., De Schrijver, A., Devos, Y. and Bartsch, D. (2011) Post market environmental monitoring of genetically modified herbicide tolerant crops (Working group report from the 4th International Workshop on PMEM of Genetically Modified Plants, Quedlinburg, Germany 2010. Journal für Kulturpflanzen, 63, 211-216.
Skoková Habuštová, O., Svobodová, Z., Cagáň, Ľ. and Sehnal, F. (2017) Use of carabids for the post-market environmental monitoring of genetically modified crops. Toxins, 9, 121.
Skoková Habuštová, O., Svobodová, Z., Spitzer, L., Doležal, P., Hussein, H.M. and Sehnal, F. (2015) Communities of ground-dwelling arthropods in conventional and transgenic maize: background data for the post-market environmental monitoring. Journal of Applied Entomology, 139, 31-45.
StatSoft Inc. (2015) Statistica Electronic Manual. StatSoft Inc., Tulsa, OK. http://documentation.statsoft.com/STATISTICAHelp.aspx?path=common/AboutSTATISTICA/ElectronicManualIndex. Accessed 12 March 2017.
Svobodová, Z., Habuštová, O., Sehnal, F., Holec, M. and Hussein, H.M. (2013) Epigeic spiders are not affected by the genetically modified maize MON 88017. Journal of Applied Entomology, 137, 56-67.
Svobodová, Z., Skoková Habuštová, O., Boháč, J. and Sehnal, F. (2016) Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize. Bulletin of Entomological Research, 106, 432-445.
Svobodová, Z., Skoková Habuštová, O., Hutchison, W.D., Hussein, H.M. and Sehnal, F. (2015) Risk assessment of genetically engineered maize resistant to Diabrotica spp.: influence on above-ground arthropods in the Czech Republic. PLoS ONE, 1, e0130656.
Toschki, A., Hothorn, L.A. and Roß-Nickoll, M. (2007) Effects of cultivation of genetically modified Bt maize on epigeic arthropods (Araneae; Carabidae). Environmental Entomology, 36, 967-981.
Twardowski, J.P., Bereś, P.K., Hurej, M., Klukowski, Z., Dąbrowski, Z.T., Sowa, S. et al. (2012) The quantitative changes of ground beetles (Col., Carabidae) in Bt and conventional maize crop in southern Poland. Journal of Plant Protection Research, 52, 404-409.
Vician, V., Svitok, M., Kočík, K. and Stašiov, S. (2015) The influence of agricultural management on the structure of ground beetle (Coleoptera: Carabidae) assemblages. Biologia, 70, 240-251.
Wach, M., Hellmich, R.L., Layton, R., Romeis, J. and Gadaleta, P.G. (2016) Dynamic role and importance of surrogate species for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms. Transgenic Research, 25, 499-505.
Wang, Y.N., Ke, K.Q., Li, Y.H., Han, L.Z., Liu, Y.M., Hua, H.X. et al. (2016) Comparison of three transgenic Bt rice lines for insecticidal protein expression and resistance against a target pest, Chilo suppressalis (Lepidoptera: Crambidae). Insect Science, 23, 78-87.
Yang, F., Chen, M., Gowda, A., Kerns, D.L. and Huang, F.N. (2018) Possibly similar genetic basis of resistance to Bacillus thuringiensis Cry1Ab protein in 3 resistant colonies of the sugarcane borer collected from Louisiana, USA. Insect Science, 25, 241-250.
Zhang, Q., Hua, G. and Adang, M.J. (2017) Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae. Insect Science, 24, 714-729.