GE maize Dotaz Zobrazit nápovědu
Carabids (Coleoptera: Carabidae) seem to be suitable bioindicators of the environmental impacts of novel agrotechnologies, including deployment of the genetically engineered (GE) crops. In this article, we describe our effort to employ carabids in the environmental risk assessment (ERA). GE maize MON88017, its near-isogenic hybrid nontreated or treated with the soil insecticide chlorpyrifos, and two reference hybrids were used to compare three different ways how to utilize carabids in ERA. The analysis of abundance of all captured carabids or of the most abundant carabid species did not disclose any differences between the treatments. The analysis based on the categories of functional traits revealed distinct features of some treatments and proved suitable for ERA because it permitted field data transportability in spite of different species compositions. Our results indicate that GE maize has no detrimental environmental effect. On the other hand, we found significant trends toward lower abundance and lower species number (including analysis of all carabid species together) in plots treated with the insecticide, and some tendencies to higher abundance and higher species number in plots sown with the reference hybrid PR38N86. Using functional group indicators allows identification of unintended changes in ecological functions of agroecosystem and comparability across geographies. We recommend data evaluation at the level of the categories of functional traits in ERA of GE crops and other agricultural practices.
Genetically engineered (GE) crops with stacked insecticidal traits expose arthropods to multiple Cry proteins fromBacillus thuringiensis(Bt). One concern is that the different Cry proteins may interact and lead to unexpected adverse effects on non-target species. Bi- and tri-trophic experiments with SmartStax maize, herbivorous spider mites (Tetranychus urticae), aphids (Rhopalosiphum padi), predatory spiders (Phylloneta impressa), ladybeetles (Harmonia axyridis) and lacewings (Chrysoperla carnea) were conducted. Cry1A.105, Cry1F, Cry3Bb1 and Cry34Ab1 moved in a similar pattern through the arthropod food chain. By contrast, Cry2Ab2 had highest concentrations in maize leaves, but lowest in pollen, and lowest acquisition rates by herbivores and predators. While spider mites contained Cry protein concentrations exceeding the values in leaves (except Cry2Ab2), aphids contained only traces of some Cry protein. Predators contained lower concentrations than their food. Among the different predators, ladybeetle larvae showed higher concentrations than lacewing larvae and juvenile spiders. Acute effects of SmartStax maize on predator survival, development and weight were not observed. The study thus provides evidence that the different Cry proteins do not interact in a way that poses a risk to the investigated non-target species under controlled laboratory conditions.
- MeSH
- Bacillus thuringiensis MeSH
- bakteriální proteiny genetika MeSH
- členovci * MeSH
- endotoxiny genetika MeSH
- geneticky modifikované rostliny genetika MeSH
- hemolyziny genetika MeSH
- kukuřice setá genetika MeSH
- larva MeSH
- potravní řetězec * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The uptake of insecticidal Cry1Ab from genetically engineered (GE) maize, via herbivore Rhopalosiphum padi, to a predator Harmonia axyridis and its potential intergenerational transfer were investigated. Cry1Ab concentration was found to be 400-fold lower in R. padi compared to GE maize, and more than two-fold lower in H. axyridis. For 62% of H. axyridis samples, Cry1Ab was under the limit of detection (LOD), for another 13% were under the limit of quantification (LOQ). The concentration of Cry1Ab was similar between H. axyridis exposed short-term and long-term with the exception of adults after long-term. There was no correlation between Cry1Ab in females and eggs and neonates. The performance of H. axyridis was comparable between Cry1Ab and control. Histological investigation did not show any pathological changes in the digestive and reproductive systems. The detected route of exposure is unlikely to be important for functional biological control by H. axyridis in agroecosystem.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- brouci * metabolismus MeSH
- endotoxiny * MeSH
- geneticky modifikované rostliny metabolismus MeSH
- hemolyziny genetika metabolismus MeSH
- kukuřice setá genetika metabolismus MeSH
- larva metabolismus MeSH
- lidé MeSH
- novorozenec MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Agriculture faces many challenges to maximize yields while it is required to operate in an environmentally sustainable manner. In the present study, we analyze the major agricultural challenges identified by European farmers (primarily related to biotic stresses) in 13 countries, namely Belgium, Bulgaria, the Czech Republic, France, Germany, Hungary, Italy, Portugal, Romania, Spain, Sweden, UK and Turkey, for nine major crops (barley, beet, grapevine, maize, oilseed rape, olive, potato, sunflower and wheat). Most biotic stresses (BSs) are related to fungi or insects, but viral diseases, bacterial diseases and even parasitic plants have an important impact on yield and harvest quality. We examine how these challenges have been addressed by public and private research sectors, using either conventional breeding, marker-assisted selection, transgenesis, cisgenesis, RNAi technology or mutagenesis. Both national surveys and scientific literature analysis followed by text mining were employed to evaluate genetic engineering (GE) and non-GE approaches. This is the first report of text mining of the scientific literature on plant breeding and agricultural biotechnology research. For the nine major crops in Europe, 128 BS challenges were identified with 40% of these addressed neither in the scientific literature nor in recent European public research programs. We found evidence that the private sector was addressing only a few of these "neglected" challenges. Consequently, there are considerable gaps between farmer's needs and current breeding and biotechnology research. We also provide evidence that the current political situation in certain European countries is an impediment to GE research in order to address these agricultural challenges in the future. This study should also contribute to the decision-making process on future pertinent international consortia to fill the identified research gaps.
- MeSH
- biotechnologie MeSH
- fyziologický stres MeSH
- genetické inženýrství MeSH
- lidé MeSH
- výzkum MeSH
- zemědělci MeSH
- zemědělské plodiny MeSH
- zemědělství metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH