• This record comes from PubMed

Positive effects of the catastrophic Hurricane Patricia on insect communities

. 2018 Oct 09 ; 8 (1) : 15042. [epub] 20181009

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 30301913
PubMed Central PMC6177391
DOI 10.1038/s41598-018-33210-7
PII: 10.1038/s41598-018-33210-7
Knihovny.cz E-resources

Highly seasonal conditions of tropical dry forests determine the temporal patterns of insect abundance. However, density-independent factors such as natural disturbances can abruptly change environmental conditions, affecting insect populations. We address the effects of the Hurricane Patricia (category 5) on species density and abundance of three feeding guilds of herbivorous insects (sap-sucking, folivorous beetles and xylophagous) and predatory beetles associated to the canopy of a tropical dry forest. Hurricane Patricia has been the strongest tropical hurricane ever reported in the Western Hemisphere. Herbivorous insects (sap-sucking and xylophagous) and predatory beetles increased in species density and abundance in the following months after the hurricane, compared to samples before it. The positive response of sap-sucking insects to Hurricane Patricia was probably related to an increase in the availability of new shoots and leaf meristems after the natural coppicing by the hurricane, while xylophagous guild seems to have been positively affected by the increase in the amount and diversity of deadwood resources. The positive response of predatory beetles may be the result of a bottom-up effect due to a greater availability of arthropod preys after the hurricane. We demonstrated that catastrophic hurricane disturbances could be important events that temporarily increase the species density and abundance of insects in tropical dry forests.

See more in PubMed

Wolda H. Insect seasonality: why? Annu. Rev. Ecol. Syst. 1988;19:1–18. doi: 10.1146/annurev.es.19.110188.000245. DOI

Kishimoto‐Yamada K, Itioka T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988) Entomol. Sci. 2015;18:407–419. doi: 10.1111/ens.12134. DOI

Janzen DH. Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology. 1973;54:687–708. doi: 10.2307/1935359. DOI

Duarte-Junior JA, Schlindwein C. The highly seasonal hawkmoth fauna (Lepidoptera Sphingidae:) of the caatinga of northeast Brazil: a case study in the state of Rio Grande do Norte. J. Lepid. Soc. 2005;59:212.

Neves FS, et al. Successional and seasonal changes in a community of dung beetles (Coleoptera: Scarabaeinae) in a tropical dry forest. Nat. Conserv. 2010;8:160–164. doi: 10.4322/natcon.00802009. DOI

Vasconcellos A, et al. Seasonality of insects in the semi-arid Caatinga of northeastern Brazil. Rev. Bras. Entomol. 2010;54:471–476. doi: 10.1590/S0085-56262010000300019. DOI

Liberal CN, Farias AMI, Meiado MV, Filgueiras BK, Iannuzzi L. How habitat change and rainfall affect dung beetle diversity in Caatinga, a Brazilian semi-arid ecosystem. J. Insect. Sci. 2011;11:1–11. doi: 10.1673/031.011.11401. PubMed DOI PMC

Nobre Carlos Eduardo Beserra, Iannuzzi Luciana, Schlindwein Clemens. Seasonality of Fruit-Feeding Butterflies (Lepidoptera, Nymphalidae) in a Brazilian Semiarid Area. ISRN Zoology. 2012;2012:1–8. doi: 10.5402/2012/268159. DOI

Beirão MV, Neves FS, Penz CM, DeVries PJ, Fernandes GW. High butterfly beta diversity between Brazilian cerrado and cerrado–caatinga transition zones. J. Insect Conserv. 2017;21:849–860. doi: 10.1007/s10841-017-0024-x. DOI

van Schaik CP, Terborgh JW, Wright SJ. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annu. Rev. Ecol. Syst. 1993;24:353–377. doi: 10.1146/annurev.es.24.110193.002033. DOI

Borchert R. Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology. 1994;75:1437–1449. doi: 10.2307/1937467. DOI

Lopezaraiza-Mikel, M. et al. Phenological Patterns of Tropical Dry Forests along Latitudinal and Successional Gradients in the Neotropics in Tropical Dry Forests in the Americas: Ecology, Conservation, and Management (eds Sanchez-Azofeifa, A., Powers, J. S., Fernandes, G. W. & Quesada, M.), 101–128 (CRC Press, 2013).

Pezzini FF, et al. Changes in tree phenology along natural regeneration in a seasonally dry tropical forest. Plant Biosyst. 2014;148:965–974. doi: 10.1080/11263504.2013.877530. DOI

Creão-Duarte A, Hernández M, Rothéa R, Santos W. Temporal variation of Membracidae (Hemiptera: Auchenorrhyncha) composition in areas of caatinga with different vegetation structures. Sociobiology. 2016;63:826–830. doi: 10.13102/sociobiology.v63i2.1071. DOI

Macedo-Reis LE, et al. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest. J. Insect Sci. 2016;16:48. doi: 10.1093/jisesa/iew027. PubMed DOI PMC

Schowalter TD. Insect responses to major landscape-level disturbance. Annu. Rev. Entomol . 2012;57:1–20. doi: 10.1146/annurev-ento-120710-100610. PubMed DOI

Levin SA, Paine RT. Disturbance, patch formation, and community structure. P. Natl. Acad. Sci. 1974;71:2744–2747. doi: 10.1073/pnas.71.7.2744. PubMed DOI PMC

Connell JH. Diversity in tropical rain forests and coral reefs. Science. 1978;199:1302–1310. doi: 10.1126/science.199.4335.1302. PubMed DOI

Brokaw NVL, Grear JS. Forest structure before and after Hurricane Hugo at three elevations in the Luquillo Mountains, Puerto Rico. Biotropica. 1991;2:386–392. doi: 10.2307/2388256. DOI

Scatena FN, Moya S, Estrada C, Chinea JD. The first five years in the reorganization of aboveground biomass and nutrient use following Hurricane Hugo in the Bisley Experimental Watersheds, Luquillo Experimental Forest, Puerto Rico. Biotropica. 1996;28:424–440. doi: 10.2307/2389086. DOI

Vandermeer J, Boucher D, Perfecto I, Cerda IG. A theory of disturbance and species diversity: evidence from Nicaragua after Hurricane Joan. Biotropica. 1996;28:600–613. doi: 10.2307/2389100. DOI

Lomascolo T, Aide TM. Seed and seedling bank dynamics in secondary forests following Hurricane Georges in Puerto Rico. Caribb. J. Sci. 2001;37:259–270.

Gouvenain RC, Silander JA. Do tropical storm regimes influence the structure of tropical lowland rain forests? Biotropica. 2003;35:166–180.

Beard KH, et al. Structural and functional responses of a subtropical forest to 10 years of hurricanes and droughts. Ecol. Monogr. 2005;75(3):345–361. doi: 10.1890/04-1114. DOI

Lugo AE. Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecol. 2008;33(4):368–398. doi: 10.1111/j.1442-9993.2008.01894.x. DOI

Kimberlain, T.B., Blake, E. S. & Cangialosi, J. P. Hurricane Patricia (EP202015). National Hurricane Center Tropical Cyclone Report (NOAA, Miami, Florida, 2016).

Bouget C, Duelli P. The effects of windthrow on forest insect communities: a literature review. Biol. Conserv. 2004;118:281–299. doi: 10.1016/j.biocon.2003.09.009. DOI

Grimbacher PS, Stork NE. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape? Oecologia. 2009;161:591–599. doi: 10.1007/s00442-009-1399-5. PubMed DOI

Schowalter TD, Willig MR, Presley SJ. Post-hurricane successional dynamics in abundance and diversity of canopy arthropods in a tropical rainforest. Environ. Entomol. 2017;46:11–20. PubMed

Price PW, et al. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Ann. Rev. Ecol. Syst. 1980;11:41–65. doi: 10.1146/annurev.es.11.110180.000353. DOI

Polis GA, Strong DR. Food web complexity and community dynamics. Am. Nat. 1996;147:813–846. doi: 10.1086/285880. DOI

Schowalter TD, Ganio LM. Invertebrate communities in a tropical rain forest canopy in Puerto Rico following Hurricane Hugo. Ecol. Entomol. 1999;24:191–201. doi: 10.1046/j.1365-2311.1999.00186.x. DOI

Schowalter, T. D. & Ganio, L. M. Diel, seasonal and disturbance induced variation in invertebrate assemblages in Arthropods of Tropical Forests (eds Basset, Y., Navotny, V., Miller, S. & Kitching, R.) 315–328 (Cambridge University Press, Cambridge, United Kingdom, 2003).

Hirao T, Murakami M, Iwamoto J, Takafumi H, Oguma H. Scale-dependent effects of windthrow disturbance on forest arthropod communities. Ecol. Res. 2008;23:189–196. doi: 10.1007/s11284-007-0370-3. DOI

Schowalter TD, Willig MR, Presley SJ. Canopy arthropod responses to experimental canopy opening and debris deposition in a tropical rainforest subject to hurricanes. Forest Ecol. Manag. 2014;332:93–102. doi: 10.1016/j.foreco.2013.12.008. DOI

Shiels AB, González G, Willig MR. Responses to canopy loss and debris deposition in a tropical forest ecosystem: Synthesis from an experimental manipulation simulating effects of hurricane disturbance. Forest Ecol. Manag. 2014;332:124–133. doi: 10.1016/j.foreco.2014.08.005. DOI

Willig MR, et al. Cross-scale responses of biodiversity to hurricane and anthropogenic disturbance in a tropical forest. Ecosystems. 2007;10:824–838. doi: 10.1007/s10021-007-9054-7. DOI

Knutson TR, et al. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate. 2015;28:7203–7224. doi: 10.1175/JCLI-D-15-0129.1. DOI

Sugi M, Murakami H, Yoshida K. Projection of future changes in the frequency of intense tropical cyclones. Clim. Dynam. 2016;49:1–14.

Sobel AH, et al. Human influence on tropical cyclone intensity. Science. 2016;353:242–246. doi: 10.1126/science.aaf6574. PubMed DOI

Barberena-Arias MF, Aide TM. Variation in Species and Trophic Composition of Insect Communities in Puerto Rico. Biotropica. 2002;34:357–367. doi: 10.1111/j.1744-7429.2002.tb00549.x. DOI

Parker Geoffrey, Martínez-Yrízar Angelina, Álvarez-Yépiz Juan C., Maass Manuel, Araiza Salvador. Effects of hurricane disturbance on a tropical dry forest canopy in western Mexico. Forest Ecology and Management. 2018;426:39–52. doi: 10.1016/j.foreco.2017.11.037. DOI

Angulo-Sandoval P, Fernandez-Marin H, Zimmerman JK, Aide TM. Changes in patterns of understory leaf phenology and herbivory following hurricane damage. Biotropica. 2004;36:60–67.

Raven JA. Phytophages of xylem and phloem: a comparison of animal and plant sap-feeders. Adv. Ecol. Res. 1983;13:135–234. doi: 10.1016/S0065-2504(08)60109-9. DOI

Douglas AE. The nutritional quality of phloem sap utilized by natural aphid populations. Ecol. Entomol. 1993;18:31–38. doi: 10.1111/j.1365-2311.1993.tb01076.x. DOI

Wolda H. Seasonal fluctuations in rainfall, food and abundance of tropical insects. J. Anim. Ecol. 1978;47:369–381. doi: 10.2307/3789. DOI

Turton SM, Siegenthaler DT. Immediate impacts of a severe tropical cyclone on the microclimate of a tropical rainforest canopy in northeast Australia. J. Trop. Ecol. 2004;20:583–586. doi: 10.1017/S0266467404001622. DOI

Zhou ZS, Guo JY, Chen HS, Wan FH. Effect of humidity on the development and fecundity of Ophraella communa (Coleoptera: Chrysomelidae) Bio. Control. 2010;55:313–319.

Hou Y, Weng Z. Temperature-dependent development and life table parameters of Octodontanipae (Coleoptera: Chrysomelidae) Environ. Entomol. 2010;39:1676–1684. doi: 10.1603/EN10015. PubMed DOI

Novais SM, Macedo-Reis LE, Neves FS. Predatory beetles in cacao agroforestry systems in Brazilian Atlantic forest: a test of the natural enemy hypothesis. Agroforest. Syst. 2017;91:201–209. doi: 10.1007/s10457-016-9917-z. DOI

Hunter MD, Forkner RE. Hurricane damage influences foliar polyphenolics and subsequent herbivory on surviving trees. Ecology. 1999;80(8):2676–2682. doi: 10.1890/0012-9658(1999)080[2676:HDIFPA]2.0.CO;2. DOI

Godfray HCJ, Hassell MP. Natural enemies may be a cause of discrete generations in tropical insects. Nature. 1987;327:144–147. doi: 10.1038/327144a0. DOI

Torres JA. Lepidoptera outbreaks in response to successional changes after the passage of Hurricane Hugo in Puerto Rico. J. Trop. Ecol. 1992;8:285–298. doi: 10.1017/S0266467400006544. DOI

Janzen DH. Ecological characterization of a Costa Rican dry forest caterpillar fauna. Biotropica. 1988;20:120–135. doi: 10.2307/2388184. DOI

Wood, S. L. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph (ed. Wood, S. L), 1365pp. (Brigham Young University, 1982).

Wermelinger B, Obrist MK, Baur H, Jakoby O, Duelli P. Synchronous rise and fall of bark beetle and parasitoid populations in windthrow areas. Agr. Forest Entomol. 2013;15(3):301–309. doi: 10.1111/afe.12018. DOI

Wermelinger B, et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. Forest Ecol. Manag. 2017;391:9–18. doi: 10.1016/j.foreco.2017.01.033. DOI

Schroeder LM, Lindelow A. Attraction of scolytids and associated beetles by different absolute amounts and proportions of α-pinene and ethanol. J. Chem. Ecol. 1989;15:807–817. doi: 10.1007/BF01015179. PubMed DOI

Hulcr J, Beaver RA, Puranasakul W, Dole SA, Sonthichai S. A comparison of bark and ambrosia beetle communities in two forest types in Northern Thailand (Coleoptera: Curculionidae: Scolytinae and Platypodinae) Environ. Entomol. 2008;37:1461–1470. doi: 10.1603/0046-225X-37.6.1461. PubMed DOI

Ranger CM, Reding ME, Persad AB, Herms DA. Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles. Agric. Forest Entomol. 2010;12:177–185. doi: 10.1111/j.1461-9563.2009.00469.x. DOI

Grimbacher PS, Stork NE. Seasonality of a diverse beetle assemblage inhabiting lowland tropical rain forest in Australia. Biotropica. 2009;41:328–337. doi: 10.1111/j.1744-7429.2008.00477.x. DOI

Onogi K, Goto A, Mochizuki Y. TCC News. Tokyo Climate Center. Japan Meteorological Agency. 2016;43:1–11.

Hayden B, Greene DF, Quesada M. A field experiment to determine the effect of dry-season precipitation on annual ring formation and leaf phenology in a seasonally dry tropical forest. J. Trop. Ecol. 2010;26:237–242. doi: 10.1017/S0266467409990563. DOI

Young, A. M. Effects of Seasonality on Insect Populations in the Tropics. In Population biology of tropical insects (ed Young, A. M), 273–333 (Springer Science & Business Media, 2012).

García-Oliva, F., Camou, A. & Maass, J. M. El clima de la region central de la costa del pacific mexicano. In Historia Natural de Chamela (eds Noguera-Alderte, A. N., Vega-Rivera, J. H., Garcia-Aldrete, A. N. & Quesada, M) 3–10 (Instituto de Biología, UNAM, 2002).

Novais SM, Macedo-Reis LE, DaRocha WD, Neves FS. Effects of habitat management on different feeding guilds of herbivorous insects in cacao agroforestry systems. Rev. Biol. Trop. 2016;64:763–777. doi: 10.15517/rbt.v64i2.19100. PubMed DOI

Neves FS, Silva JO, Espirito-Santo MM, Fernandes GW. Insect herbivores and leaf damage along successional and vertical gradients in a tropical dry forest. Biotropica. 2014;46:14–24. doi: 10.1111/btp.12068. DOI

Arnett, R. H. Jr. American Insects, a Handbook of Insects of America North of Mexico (ed Arnett, R. H. Jr.) 1024pp. (USA, FL-Boca Raton: CRC Press, 2000).

Wardhaugh CW, Stone MJ, Stork NE. Seasonal variation in a diverse beetle assemblage along two elevational gradients in the Australian Wet Tropics. Sci. Rep. 2018;8(1):8559. doi: 10.1038/s41598-018-26216-8. PubMed DOI PMC

Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Crawley, M. J. The R Book (ed. Crawley, M. J.), 1051pp. (John Wiley & Sons, Chichester, 2013).

R Development Core Team. R: A language and environment for statistical computing. https://cran.r-project.org/ (2018).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...