Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
16491
Cancer Research UK - United Kingdom
R25 CA092049
NCI NIH HHS - United States
P30 CA086862
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
P50 CA097274
NCI NIH HHS - United States
R01 CA200703
NCI NIH HHS - United States
HHSN261200800001C
CCR NIH HHS - United States
001
World Health Organization - International
HHSN261200800001E
NCI NIH HHS - United States
PubMed
30305637
PubMed Central
PMC6180091
DOI
10.1038/s41467-018-06541-2
PII: 10.1038/s41467-018-06541-2
Knihovny.cz E-zdroje
- MeSH
- anotace sekvence MeSH
- genetická predispozice k nemoci * MeSH
- genotypizační techniky MeSH
- HEK293 buňky MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- lidské chromozomy, pár 14 genetika MeSH
- lidské chromozomy, pár 6 genetika MeSH
- mikro RNA metabolismus MeSH
- proliferace buněk MeSH
- reportérové geny MeSH
- reprodukovatelnost výsledků MeSH
- rizikové faktory MeSH
- rodina MeSH
- sekvence nukleotidů MeSH
- typy dědičnosti genetika MeSH
- Waldenströmova makroglobulinemie genetika MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- enhanced green fluorescent protein MeSH Prohlížeč
- mikro RNA MeSH
- zelené fluorescenční proteiny MeSH
Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40-31.03, P = 1.36 × 10-54) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45-6.96, P = 8.75 × 10-19). Both risk alleles are observed at a low frequency among controls (~2-3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy.
Bill Lyons Informatics Centre UCL Cancer Institute University College London London WC1E 6DD UK
Cancer Biology and Genetics Program Memorial Sloan Kettering Cancer Center New York 10065 NY USA
Cancer Epidemiology Unit University of Oxford Oxford OX3 7LF UK
Centre for Big Data Research in Health University of New South Wales Sydney 2052 NSW Australia
CIBER Epidemiología y Salud Pública Madrid 28029 Spain
Department of Biostatistics Harvard T H Chan School of Public Health Boston 02115 MA USA
Department of Computational Biology St Jude Children's Research Hospital Memphis 38105 TN USA
Department of Environmental Health Sciences Yale School of Public Health New Haven 06520 CT USA
Department of Epidemiology Brown University Providence 02903 RI USA
Department of Epidemiology Harvard T H Chan School of Public Health Boston 02115 MA USA
Department of Epidemiology University of North Carolina at Chapel Hill Chapel Hill 27599 NC USA
Department of Family Medicine and Public Health Sciences Wayne State University Detroit 48201 MI USA
Department of Health Sciences Research Mayo Clinic Rochester 55905 MN USA
Department of Health Sciences University of York York YO10 5DD UK
Department of Hematology Rigshospitalet Copenhagen 2100 Denmark
Department of Immunology Genetics and Pathology Uppsala University Uppsala 75105 Sweden
Department of Internal Medicine Mayo Clinic Rochester 55905 MN USA
Department of Laboratory Medicine and Pathology Mayo Clinic Rochester 55905 MN USA
Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm 17177 Sweden
Department of Medicine Memorial Sloan Kettering Cancer Center New York 10065 NY USA
Department of Medicine Solna Karolinska Institutet Stockholm 17176 Sweden
Department of Medicine Stanford University School of Medicine Stanford 94305 CA USA
Department of Nutrition Harvard T H Chan School of Public Health Boston 02115 MA USA
Department of Oncology School of Medicine Johns Hopkins University Baltimore 21205 MD USA
Department of Pathology University of Alabama at Birmingham Birmingham 35233 AL USA
Department of Statistics Dongguk University Seoul 100 715 Republic of Korea
Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda 20892 MD USA
Division of Endocrinology Diabetes and Metabolism The Ohio State University Columbus 43210 OH USA
Division of Public Health Sciences Fred Hutchinson Cancer Research Center Seattle 98117 WA USA
Epidemiology Research Program American Cancer Society Atlanta 30303 GA USA
Genomic Epidemiology Group German Cancer Research Center Heidelberg 69120 Germany
Hematology Center Karolinska University Hospital Stockholm 17176 Sweden
Human Genetics Foundation Turin 10126 Italy
Institute for Risk Assessment Sciences Utrecht University Utrecht 3508 TD The Netherlands
International Agency for Research on Cancer Lyon 69372 France
Ontario Health Study Toronto M5S 1C6 ON Canada
School of Nursing and Human Sciences Dublin City University Dublin 9 Ireland
The Tisch Cancer Institute Icahn School of Medicine at Mount Sinai New York 10029 NY USA
Zobrazit více v PubMed
Swerdlow, S. H. et al. in WHO Classification of Tumours of the Haematopoietic and Lymphoid Tissues 4th edn (eds Swerdlow, S. H. et al.) (International Agency for Research on Cancer, Lyon, 2008).
Teras LR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J. Clin. 2016;66:443–459. doi: 10.3322/caac.21357. PubMed DOI
Kristinsson SY, et al. Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenström macroglobulinemia patients: a population-based study in Sweden. Blood. 2008;112:3052–3056. doi: 10.1182/blood-2008-06-162768. PubMed DOI PMC
Altieri A, Bermejo JL, Hemminki K. Familial aggregation of lymphoplasmacytic lymphoma with non-Hodgkin lymphoma and other neoplasms. Leukemia. 2005;19:2342–2343. doi: 10.1038/sj.leu.2403991. PubMed DOI
Koshiol J, Gridley G, Engels EA, McMaster ML, Landgren O. Chronic immune stimulation and subsequent Waldenström macroglobulinemia. Arch. Intern. Med. 2008;168:1903–1909. doi: 10.1001/archinternmed.2008.4. PubMed DOI PMC
Kristinsson SY, et al. Immune-related and inflammatory conditions and risk of lymphoplasmacytic lymphoma or Waldenström macroglobulinemia. J. Natl Cancer Inst. 2010;102:557–567. doi: 10.1093/jnci/djq043. PubMed DOI PMC
Royer RH, et al. Differential characteristics of Waldenström macroglobulinemia according to patterns of familial aggregation. Blood. 2010;115:4464–4471. doi: 10.1182/blood-2009-10-247973. PubMed DOI PMC
Vajdic CM, et al. Medical history, lifestyle, family history, and occupational risk factors for lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J. Natl Cancer Inst. Monogr. 2014;2014:87–97. doi: 10.1093/jncimonographs/lgu002. PubMed DOI PMC
Treon SP, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N. Engl. J. Med. 2012;367:826–833. doi: 10.1056/NEJMoa1200710. PubMed DOI
McMaster ML, et al. Genomewide linkage screen for Waldenström macroglobulinemia susceptibility loci in high-risk families. Am. J. Hum. Genet. 2006;79:695–701. doi: 10.1086/507687. PubMed DOI PMC
Berndt SI, et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat. Genet. 2013;45:868–876. doi: 10.1038/ng.2652. PubMed DOI PMC
Berndt SI, et al. Two susceptibility loci identified for prostate cancer aggressiveness. Nat. Commun. 2015;6:6889. doi: 10.1038/ncomms7889. PubMed DOI PMC
Yang J, et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 2011;19:807–812. doi: 10.1038/ejhg.2011.39. PubMed DOI PMC
McCarthy S, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016;48:1279–1283. doi: 10.1038/ng.3643. PubMed DOI PMC
Helbig I, Hodge SE, Ottman R. Familial cosegregation of rare genetic variants with disease in complex disorders. Eur. J. Hum. Genet. 2013;21:444–450. doi: 10.1038/ejhg.2012.194. PubMed DOI PMC
Javierre BM, et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell. 2016;167:1369–1384. doi: 10.1016/j.cell.2016.09.037. PubMed DOI PMC
Mifsud B, et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 2015;47:598–606. doi: 10.1038/ng.3286. PubMed DOI
Jin F, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013;503:290–294. doi: 10.1038/nature12644. PubMed DOI PMC
Mayr C. Regulation by 3′-untranslated regions. Ann. Rev. Genet. 2017;51:171–194. doi: 10.1146/annurev-genet-120116-024704. PubMed DOI
Singh I, et al. Widespread intronic polyadenylation diversifies immune cell transcriptomes. Nat. Commun. 2018;9:1716. doi: 10.1038/s41467-018-04112-z. PubMed DOI PMC
Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev. 2013;27:2380–2396. doi: 10.1101/gad.229328.113. PubMed DOI PMC
Gruber AJ, et al. A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res. 2016;26:1145–1159. doi: 10.1101/gr.202432.115. PubMed DOI PMC
Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31:3429–3431. doi: 10.1093/nar/gkg599. PubMed DOI PMC
Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–404. doi: 10.1158/2159-8290.CD-12-0095. PubMed DOI PMC
Forbes SA, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45:D777–D783. doi: 10.1093/nar/gkw1121. PubMed DOI PMC
Lee DY, Deng Z, Wang CH, Yang BB. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc. Natl Acad. Sci. USA. 2007;104:20350–20355. doi: 10.1073/pnas.0706901104. PubMed DOI PMC
Kuo WT, et al. MicroRNA-324 in human cancer: miR-324-5p and miR-324-3p have distinct biological functions in human cancer. Anticancer Res. 2016;36:5189–5196. doi: 10.21873/anticanres.11089. PubMed DOI
Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS ONE. 2013;8:e79467. doi: 10.1371/journal.pone.0079467. PubMed DOI PMC
Nagel D, Vincendiau M, Eitelhuber AC, Krappmann D. Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene. 2014;33:5655–5665. doi: 10.1038/onc.2013.565. PubMed DOI
Yang G, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood. 2013;122:1222–1232. doi: 10.1182/blood-2012-12-475111. PubMed DOI
Cerhan JR, et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat. Genet. 2014;46:1233–1238. doi: 10.1038/ng.3105. PubMed DOI PMC
Bassig BA, et al. Genetic susceptibility to diffuse large B-cell lymphoma in a pooled study of three Eastern Asian populations. Eur. J. Haematol. 2015;95:442–448. doi: 10.1111/ejh.12513. PubMed DOI
De Silva NS, Simonetti G, Heise N, Klein U. The diverse roles of IRF4 in late germinal center B-cell differentiation. Immunol. Rev. 2012;247:73–92. doi: 10.1111/j.1600-065X.2012.01113.x. PubMed DOI
Feldman AL, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively-parallel genomic sequencing. Blood. 2011;117:915–919. doi: 10.1182/blood-2010-08-303305. PubMed DOI PMC
Shukla V, Ma S, Hardy RR, Joshi SS, Lu R. A role for IRF4 in the development of CLL. Blood. 2013;122:2848–2855. doi: 10.1182/blood-2013-03-492769. PubMed DOI PMC
Gutiérrez NC, et al. Gene expression profiling of B lymphocytes and plasma cells from Waldenström’s macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia. 2007;21:541–549. doi: 10.1038/sj.leu.2404520. PubMed DOI
Roberts MJ, et al. Nuclear protein dysregulation in lymphoplasmacytic lymphoma/Waldenström macroglobulinemia. Hematopathol. 2013;139:210–219. PubMed
Ochiai K, et al. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity. 2013;38:918–929. doi: 10.1016/j.immuni.2013.04.009. PubMed DOI PMC
Negishi H, et al. Negative regulation of Toll-like-receptor signaling by IRF4. Proc. Natl Acad. Sci. USA. 2005;102:15989–15994. doi: 10.1073/pnas.0508327102. PubMed DOI PMC
Lang R, Hammer M, Mages J. DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J. Immunol. 2006;177:7497–7504. doi: 10.4049/jimmunol.177.11.7497. PubMed DOI
Sekine Y, et al. Regulation of STAT3-mediated signaling by LMW-DSP2. Oncogene. 2006;25:5801–5806. doi: 10.1038/sj.onc.1209578. PubMed DOI
Fulciniti M, et al. MYD88-independent growth and survival effects of Sp1 transactivation in Waldenström macroglobulinemia. Blood. 2014;123:2673–2681. doi: 10.1182/blood-2014-01-550509. PubMed DOI PMC
Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–793. doi: 10.1038/nature08476. PubMed DOI PMC
Kashatus DF. Ral GTPases in tumorigenesis: emerging from the shadows. Exp. Cell Res. 2013;319:2337–2342. doi: 10.1016/j.yexcr.2013.06.020. PubMed DOI PMC
Bodemann BO, White MA. Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nat. Rev. Cancer. 2008;8:133–140. doi: 10.1038/nrc2296. PubMed DOI
Chien Y, et al. RalB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell. 2006;127:157–170. doi: 10.1016/j.cell.2006.08.034. PubMed DOI
Adams BD, Anastasiadou E, Esteller M, He L, Slack FJ. The inescapable influence of noncoding RNAs in cancer. Cancer Res. 2015;75:5206–5210. doi: 10.1158/0008-5472.CAN-15-1989. PubMed DOI PMC
Rapicavoli NA, et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. eLife. 2013;2:e00762. doi: 10.7554/eLife.00762. PubMed DOI PMC
Huang W, et al. DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions. Nature. 2015;528:517–522. doi: 10.1038/nature16193. PubMed DOI PMC
Carpenter S, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013;341:789–792. doi: 10.1126/science.1240925. PubMed DOI PMC
Lemal R, et al. TCL1 expression patterns in Waldenström macroglobulinemia. Mod. Pathol. 2016;29:83–88. doi: 10.1038/modpathol.2015.122. PubMed DOI
Hoyer KK, et al. Dysregulated TCL1 promotes multiple classes of mature B cell lymphoma. Proc. Natl Acad. Sci. USA. 2002;99:14392–14397. doi: 10.1073/pnas.212410199. PubMed DOI PMC
Laine J, Künstle G, Obata T, Sha M, Noguchi M. The protooncogene TCL1 is an Akt kinase coactivator. Mol. Cell. 2000;6:395–407. doi: 10.1016/S1097-2765(00)00039-3. PubMed DOI
Ropars V, et al. The TCL1A oncoprotein interacts directly with the NF-κB inhibitor IκB. PLoS ONE. 2009;4:e6567. doi: 10.1371/journal.pone.0006567. PubMed DOI PMC
Gaudio E, et al. Tcl1 interacts with Atm and enhances NF-κB activation in hematologic malignancies. Blood. 2012;119:180–187. doi: 10.1182/blood-2011-08-374561. PubMed DOI PMC
Zhou W, et al. Mosaic loss of chromosome Y is associated with common variation near TCL1A. Nat. Genet. 2016;48:563–568. doi: 10.1038/ng.3545. PubMed DOI PMC
Turner JJ, et al. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood. 2010;116:e90–e98. doi: 10.1182/blood-2010-06-289561. PubMed DOI PMC
Yu K, et al. Population substructure and control selection in genome-wide association studies. PLoS ONE. 2008;3:e2551. doi: 10.1371/journal.pone.0002551. PubMed DOI PMC
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. PubMed PMC
International HapMap Consortium et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–861. doi: 10.1038/nature06258. PubMed DOI PMC
Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38:904–909. doi: 10.1038/ng1847. PubMed DOI
Vijai J, et al. Susceptibility loci associated with specific and shared subtypes of lymphoid malignancies. PLoS Genet. 2013;9:e1003220. doi: 10.1371/journal.pgen.1003220. PubMed DOI PMC
Park JH, et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat. Genet. 2010;42:570–575. doi: 10.1038/ng.610. PubMed DOI PMC
Pharoah PD, et al. Polygenic susceptibility to breast cancer and implications for prevention. Nat. Genet. 2002;31:33–36. doi: 10.1038/ng853. PubMed DOI
Yang J, et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010;42:565–569. doi: 10.1038/ng.608. PubMed DOI PMC
Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 2011;88:294–305. doi: 10.1016/j.ajhg.2011.02.002. PubMed DOI PMC
Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS) Genome Biol. 2008;9:R137. doi: 10.1186/gb-2008-9-9-r137. PubMed DOI PMC
Kasowski M, et al. Extensive variation in chromatin states across humans. Science. 2013;342:750–752. doi: 10.1126/science.1242510. PubMed DOI PMC
Falahati R, et al. Chemoselection of allogeneic HSC after murine neonatal transplantation without myeloablation or post-transplant immunosuppression. Mol. Ther. 2012;20:2180–2189. doi: 10.1038/mt.2012.136. PubMed DOI PMC