Crystal structure of carbonic anhydrase CaNce103p from the pathogenic yeast Candida albicans
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GA17-08343S
Grantová Agentura České Republiky - International
NPU LO1302
Ministerstvo Školství, Mládeže a Tělovýchovy - International
PubMed
30367660
PubMed Central
PMC6203986
DOI
10.1186/s12900-018-0093-4
PII: 10.1186/s12900-018-0093-4
Knihovny.cz E-zdroje
- Klíčová slova
- CaNce103p, Candida albicans, Carbonic anhydrase, Crystal structure, Substrate tunnel,
- MeSH
- Candida albicans enzymologie MeSH
- karboanhydrasy chemie MeSH
- katalytická doména MeSH
- krystalografie rentgenová MeSH
- kvarterní struktura proteinů MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- karboanhydrasy MeSH
BACKGROUND: The pathogenic yeast Candida albicans can proliferate in environments with different carbon dioxide concentrations thanks to the carbonic anhydrase CaNce103p, which accelerates spontaneous conversion of carbon dioxide to bicarbonate and vice versa. Without functional CaNce103p, C. albicans cannot survive in atmospheric air. CaNce103p falls into the β-carbonic anhydrase class, along with its ortholog ScNce103p from Saccharomyces cerevisiae. The crystal structure of CaNce103p is of interest because this enzyme is a potential target for surface disinfectants. RESULTS: Recombinant CaNce103p was prepared in E. coli, and its crystal structure was determined at 2.2 Å resolution. CaNce103p forms a homotetramer organized as a dimer of dimers, in which the dimerization and tetramerization surfaces are perpendicular. Although the physiological role of CaNce103p is similar to that of ScNce103p from baker's yeast, on the structural level it more closely resembles carbonic anhydrase from the saprophytic fungus Sordaria macrospora, which is also tetrameric. Dimerization is mediated by two helices in the N-terminal domain of the subunits. The N-terminus of CaNce103p is flexible, and crystals were obtained only upon truncation of the first 29 amino acids. Analysis of CaNce103p variants truncated by 29, 48 and 61 amino acids showed that residues 30-48 are essential for dimerization. Each subunit contains a zinc atom in the active site and displays features characteristic of type I β-carbonic anhydrases. Zinc is tetrahedrally coordinated by one histidine residue, two cysteine residues and a molecule of β-mercaptoethanol originating from the crystallization buffer. The active sites are accessible via substrate tunnels, which are slightly longer and narrower than those observed in other fungal carbonic anhydrases. CONCLUSIONS: CaNce103p is a β-class homotetrameric metalloenzyme composed of two homodimers. Its structure closely resembles those of other β-type carbonic anhydrases, in particular CAS1 from Sordaria macrospora. The main differences occur in the N-terminal part and the substrate tunnel. Detailed knowledge of the CaNce103p structure and the properties of the substrate tunnel in particular will facilitate design of selective inhibitors of this enzyme.
Zobrazit více v PubMed
Koenig Seymour H., Brown Rodney D., Needham Terrence E., Matwiyoff Nicholas A. Kinetic parameters of human carbonic anhydrase B as determined from NMR linewidths of 13C in CO2 and HCO3−. Biochemical and Biophysical Research Communications. 1973;53(2):624–630. doi: 10.1016/0006-291X(73)90707-9. PubMed DOI
Boone CD, Gill S, Habibzadegan A, McKenna R. Carbonic anhydrase: an efficient enzyme with possible global implications. Int J Chem Eng. 2013;2013:1–6. doi: 10.1155/2013/813931. DOI
Lehneck R, Pöggeler S. A matter of structure: structural comparison of fungal carbonic anhydrases. Appl Microbiol Biotechnol. 2014;98:8433–8441. doi: 10.1007/s00253-014-5993-z. PubMed DOI
Supuran CT. Structure and function of carbonic anhydrases. Biochem J. 2016;473:2023–2032. doi: 10.1042/BCJ20160115. PubMed DOI
Brinkman R. The occurrence of carbonic anhydrase in lower marine animals. J Physiol. 1933;80:171–173. doi: 10.1113/jphysiol.1933.sp003079. PubMed DOI PMC
Neish AC. Studies on chloroplasts: their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem J. 1939;33:300–308. doi: 10.1042/bj0330300. PubMed DOI PMC
Rowlett RS. Structure and catalytic mechanism of the β-carbonic anhydrases. Biochim Biophys Acta. 1804;2010:362–373. PubMed
Lehneck R, Neumann P, Vullo D, Elleuche S, Supuran CT, Ficner R, et al. Crystal structures of two tetrameric β-carbonic anhydrases from the filamentous ascomycete Sordaria macrospora. FEBS J. 2014;281:1759–1772. doi: 10.1111/febs.12738. PubMed DOI
Klengel T, Liang W-JJ, Chaloupka J, Ruoff C, Schröppel K, Naglik JR, et al. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol. 2005;15:2021–2026. doi: 10.1016/j.cub.2005.10.040. PubMed DOI PMC
Cleves AE, Cooper DN, Barondes SH, Kelly RB. A new pathway for protein export in Saccharomyces cerevisiae. J Cell Biol. 1996;133:1017–1026. doi: 10.1083/jcb.133.5.1017. PubMed DOI PMC
Amoroso G, Morell-Avrahov L, Müller D, Klug K, Sültemeyer D. The gene NCE103 (YNL036w) from Saccharomyces cerevisiae encodes a functional carbonic anhydrase and its transcription is regulated by the concentration of inorganic carbon in the medium. Mol Microbiol. 2005;56:549–558. doi: 10.1111/j.1365-2958.2005.04560.x. PubMed DOI
Götz R, Gnann A, Zimmermann FK. Deletion of the carbonic anhydrase-like geneNCE103 of the yeastSaccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast. 1999;15:855–864. doi: 10.1002/(SICI)1097-0061(199907)15:10A<855::AID-YEA425>3.0.CO;2-C. PubMed DOI
Brown Alistair J.P., Brown Gordon D., Netea Mihai G., Gow Neil A.R. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends in Microbiology. 2014;22(11):614–622. doi: 10.1016/j.tim.2014.07.001. PubMed DOI PMC
Cottier F, Raymond M, Kurzai O, Bolstad M, Leewattanapasuk W, Jiménez-López C, et al. The bZIP transcription factor Rca1p is a central regulator of a novel CO2 sensing pathway in yeast. PLoS Pathog. 2012;8:e1002485. doi: 10.1371/journal.ppat.1002485. PubMed DOI PMC
Teng Y-B, Jiang Y-L, He Y-X, He W-W, Lian F-M, Chen Y, et al. Structural insights into the substrate tunnel of Saccharomyces cerevisiae carbonic anhydrase Nce103. BMC Struct Biol. 2009;9:67. doi: 10.1186/1472-6807-9-67. PubMed DOI PMC
Ashok Kumar T. CFSSP: Chou and Fasman Secondary Structure Prediction server. WIDE SPECTRUM: Research Journal. 2013;1(9):15–19.
Mitsuhashi S, Mizushima T, Yamashita E, Yamamoto M, Kumasaka T, Moriyama H, et al. X-ray structure of beta-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO(2) hydration. J Biol Chem. 2000;275:5521–5526. doi: 10.1074/jbc.275.8.5521. PubMed DOI
Cronk JD, Endrizzi JA, Cronk MR, O’neill JW, Zhang KY. Crystal structure of E. coli beta-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci. 2001;10:911–922. doi: 10.1110/ps.46301. PubMed DOI PMC
Ferraroni M, Del Prete S, Vullo D, Capasso C, Supuran CT. Crystal structure and kinetic studies of a tetrameric type II β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 2015;71:2449–2456. doi: 10.1107/S1399004715018635. PubMed DOI
Cronk JD, Rowlett RS, Zhang KYJ, Tu C, Endrizzi JA, Lee J, et al. Identification of a novel noncatalytic bicarbonate binding site in eubacterial beta-carbonic anhydrase. Biochemistry. 2006;45:4351–4361. doi: 10.1021/bi052272q. PubMed DOI
Suarez Covarrubias A, Larsson AM, Högbom M, Lindberg J, Bergfors T, Björkelid C, et al. Structure and function of carbonic anhydrases from Mycobacterium tuberculosis. J Biol Chem. 2005;280:18782–18789. doi: 10.1074/jbc.M414348200. PubMed DOI
Mueller U, Darowski N, Fuchs MR, Förster R, Hellmig M, Paithankar KS, et al. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J Synchrotron Radiat. 2012;19:442–449. doi: 10.1107/S0909049512006395. PubMed DOI PMC
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr. 2010;66:133–144. doi: 10.1107/S0907444909047374. PubMed DOI PMC
Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Sparta KM, Krug M, Heinemann U, Mueller U, Weiss MS, IUCr XDSAPP2.0. J Appl Crystallogr. 2016;49:1085–1092. doi: 10.1107/S1600576716004416. DOI
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68:352–367. doi: 10.1107/S0907444912001308. PubMed DOI PMC
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research. 1988;16(22):10881–10890. doi: 10.1093/nar/16.22.10881. PubMed DOI PMC
Gouet P. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 2003;31(13):3320–3323. doi: 10.1093/nar/gkg556. PubMed DOI PMC
Kozlikova Barbora, Sebestova Eva, Sustr Vilem, Brezovsky Jan, Strnad Ondrej, Daniel Lukas, Bednar David, Pavelka Antonin, Manak Martin, Bezdeka Martin, Benes Petr, Kotry Matus, Gora Artur, Damborsky Jiri, Sochor Jiri. CAVER Analyst 1.0: graphic tool for interactive visualization and analysis of tunnels and channels in protein structures. Bioinformatics. 2014;30(18):2684–2685. doi: 10.1093/bioinformatics/btu364. PubMed DOI
Cellular Localization of Carbonic Anhydrase Nce103p in Candida albicans and Candida parapsilosis