Cellular Localization of Carbonic Anhydrase Nce103p in Candida albicans and Candida parapsilosis
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GA17-08343S
Grantová Agentura České Republiky
PubMed
32013007
PubMed Central
PMC7036955
DOI
10.3390/ijms21030850
PII: ijms21030850
Knihovny.cz E-resources
- Keywords
- Candida albicans, Candida parapsilosis, Nce103p, carbonic anhydrase, cell wall, electron microscopy, localization, mass spectrometry,
- MeSH
- Cell Membrane enzymology MeSH
- Cell Wall enzymology MeSH
- Candida albicans enzymology growth & development MeSH
- Candida parapsilosis enzymology growth & development MeSH
- Cytosol enzymology MeSH
- Microscopy, Electron MeSH
- Fungal Proteins metabolism MeSH
- Mass Spectrometry MeSH
- Carbonic Anhydrases metabolism MeSH
- Mitochondria enzymology MeSH
- Batch Cell Culture Techniques MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fungal Proteins MeSH
- Carbonic Anhydrases MeSH
Pathogenic yeasts Candida albicans and Candida parapsilosis possess a ß-type carbonic anhydrase Nce103p, which is involved in CO2 hydration and signaling. C. albicans lacking Nce103p cannot survive in low CO2 concentrations, e.g., in atmospheric growth conditions. Candida carbonic anhydrases are orthologous to the Saccharomyces cerevisiae enzyme, which had originally been detected as a substrate of a non-classical export pathway. However, experimental evidence on localization of C. albicans and C. parapsilosis carbonic anhydrases has not been reported to date. Immunogold labeling and electron microscopy used in the present study showed that carbonic anhydrases are localized in the cell wall and plasmatic membrane of both Candida species. This localization was confirmed by Western blot and mass spectrometry analyses of isolated cell wall and plasma membrane fractions. Further analysis of C. albicans and C. parapsilosis subcellular fractions revealed presence of carbonic anhydrases also in the cytosolic and mitochondrial fractions of Candida cells cultivated in shaken liquid cultures, under the atmospheric conditions.
See more in PubMed
Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 2014;8:5–10. doi: 10.1111/1469-0691.12539. PubMed DOI
Ben-Ami R. Treatment of invasive candidiasis: A narrative review. J. Fungi. 2018;4:97. doi: 10.3390/jof4030097. PubMed DOI PMC
Tóth R., Nosek J., Mora-Montes H.M., Gabaldon T., Bliss J.M., Nosanchuk J.D., Turner S.A., Butler G., Vágvölgyi C., Gácser A. Candida parapsilosis: From Genes to the Bedside. Clin. Microbiol. Rev. 2019;32 doi: 10.1128/CMR.00111-18. PubMed DOI PMC
Klengel T., Liang W.-J.J., Chaloupka J., Ruoff C., Schröppel K., Naglik J.R., Eckert S.E., Mogensen E.G., Haynes K., Tuite M.F., et al. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr. Biol. 2005;15:2021–2026. doi: 10.1016/j.cub.2005.10.040. PubMed DOI PMC
Segal E.S., Gritsenko V., Levitan A., Yadav B., Dror N., Steenwyk J.L., Silberberg Y., Mielich K., Rokas A., Gow N.A.R., et al. Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans. MBio. 2018;9 doi: 10.1128/mBio.02048-18. PubMed DOI PMC
Cottier F., Raymond M., Kurzai O., Bolstad M., Leewattanapasuk W., Jiménez-López C., Lorenz M.C., Sanglard D., Váchová L., Pavelka N., et al. The bZIP transcription factor Rca1p is a central regulator of a novel CO 2 sensing pathway in yeast. PLoS Pathog. 2012;8 doi: 10.1371/journal.ppat.1002485. PubMed DOI PMC
Martin R., Pohlers S., Mühlschlegel F.A., Kurzai O. CO2 sensing in fungi: At the heart of metabolic signaling. Curr. Genet. 2017;63:965–972. doi: 10.1007/s00294-017-0700-0. PubMed DOI
Elleuche S., Pöggeler S. Carbonic anhydrases in fungi. Microbiology. 2010;156:23–29. doi: 10.1099/mic.0.032581-0. PubMed DOI
Teng Y.-B., Jiang Y.-L., He Y.-X., He W.-W., Lian F.-M., Chen Y., Zhou C.-Z. Structural insights into the substrate tunnel of Saccharomyces cerevisiae carbonic anhydrase Nce103. BMC Struct. Biol. 2009;9:67. doi: 10.1186/1472-6807-9-67. PubMed DOI PMC
Dostál J., Brynda J., Blaha J., Macháček S., Heidingsfeld O., Pichová I. Crystal structure of carbonic anhydrase CaNce103p from the pathogenic yeast Candida albicans. BMC Struct. Biol. 2018;18 doi: 10.1186/s12900-018-0093-4. PubMed DOI PMC
Götz R., Gnann A., Zimmermann F.K. Deletion of the carbonic anhydrase-like geneNCE103 of the yeastSaccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast. 1999;15:855–864. doi: 10.1002/(SICI)1097-0061(199907)15:10A<855::AID-YEA425>3.0.CO;2-C. PubMed DOI
Cleves A.E., Cooper D.N.W., Barondes S.H., Kelly R.B. A new pathway for protein export in Saccharomyces cerevisiae. J. Cell Biol. 1996;133:1017–1026. doi: 10.1083/jcb.133.5.1017. PubMed DOI PMC
Skrzypek M., Binkley J., Binkley G., Miyasato S., Simison M., Sherlock G. Candida Genome Database. [(accessed on 20 January 2020)]; Available online: http://www.candidagenome.org/
Zinser E., Daum G. Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast. 1995;11:493–536. doi: 10.1002/yea.320110602. PubMed DOI
Petersen T.N., Brunak S., Von Heijne G., Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Klis F.M., Brul S. Adaptations of the secretome of Candida albicans in response to host-related environmental conditions. Eukaryot. Cell. 2015;14:1165–1172. doi: 10.1128/EC.00142-15. PubMed DOI PMC
She X., Zhang P., Gao Y., Zhang L., Wang Q., Chen H., Calderone R., Liu W., Li D. A mitochondrial proteomics view of complex I deficiency in Candida albicans. Mitochondrion. 2018;38:48–57. doi: 10.1016/j.mito.2017.08.003. PubMed DOI
Vögtle F.N., Burkhart J.M., Rao S., Gerbeth C., Hinrichs J., Martinou J.C., Chacinska A., Sickmann A., Zahedi R.P., Meisinger C. Intermembrane space proteome of yeast mitochondria. Mol. Cell. Proteomics. 2012;11:1840–1852. doi: 10.1074/mcp.M112.021105. PubMed DOI PMC
Kumar A., Agarwal S., Heyman J.A., Matson S., Heidtman M., Piccirillo S., Umansky L., Drawid A., Jansen R., Liu Y., et al. Subcellular localization of the yeast proteome. Genes Dev. 2002;16:707–719. doi: 10.1101/gad.970902. PubMed DOI PMC
Pitarch A., Sánchez M., Nombela C., Gil C. Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol. Cell. Proteomics. 2002;1:967–982. doi: 10.1074/mcp.M200062-MCP200. PubMed DOI
Vinterová Z., Šanda M., Dostál J., Hrušková-Heidingsfeldová O., Pichová I. Evidence for the presence of proteolytically active secreted aspartic proteinase 1 of Candida parapsilosis in the cell wall. Protein Sci. 2011;20:2004–2012. doi: 10.1002/pro.744. PubMed DOI PMC