AFLP-AFLP in silico-NGS approach reveals polymorphisms in repetitive elements in the malignant genome

. 2018 ; 13 (11) : e0206620. [epub] 20181108

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30408048

The increasing interest in exploring the human genome and identifying genetic risk factors contributing to the susceptibility to and outcome of diseases has supported the rapid development of genome-wide techniques. However, the large amount of obtained data requires extensive bioinformatics analysis. In this work, we established an approach combining amplified fragment length polymorphism (AFLP), AFLP in silico and next generation sequencing (NGS) methods to map the malignant genome of patients with chronic myeloid leukemia. We compared the unique DNA fingerprints of patients generated by the AFLP technique approach with those of healthy donors to identify AFLP markers associated with the disease and/or the response to treatment with imatinib, a tyrosine kinase inhibitor. Among the statistically significant AFLP markers selected for NGS analysis and virtual fingerprinting, we identified the sequences of three fragments in the region of DNA repeat element OldhAT1, LINE L1M7, LTR MER90, and satellite ALR/Alpha among repetitive elements, which may indicate a role of these non-coding repetitive sequences in hematological malignancy. SNPs leading to the presence/absence of these fragments were confirmed by Sanger sequencing. When evaluating the results of AFLP analysis for some fragments, we faced the frequently discussed size homoplasy, resulting in co-migration of non-identical AFLP fragments that may originate from an insertion/deletion, SNP, somatic mutation anywhere in the genome, or combination thereof. The AFLP-AFLP in silico-NGS procedure represents a smart alternative to microarrays and relatively expensive and bioinformatically challenging whole-genome sequencing to detect the association of variable regions of the human genome with diseases.

Zobrazit více v PubMed

de Brevern AG, Meyniel J, Fairhead C, Neuvéglise C, Malpertuy A. Trends in IT Innovation to Build a Next Generation Bioinformatics Solution to Manage and Analyse Biological Big Data Produced by NGS Technologies. BioMed research international. 2015;2015: 904541 10.1155/2015/904541 PubMed DOI PMC

Ng PC, Kirkness EF. Whole genome sequencing. Methods Mol Biol. 2010;628: 215–226. 10.1007/978-1-60327-367-1_12 PubMed DOI

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409: 860–921. 10.1038/35057062 PubMed DOI

International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431: 931–945. 10.1038/nature03001 PubMed DOI

Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467: 1061–1073. 10.1038/nature09534 PubMed DOI PMC

Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491: 56–65. 10.1038/nature11632 PubMed DOI PMC

Chaisson, John Huddleston, Dennis Megan Y, Sudmant Peter H, Maika Malig, Fereydoun Hormozdiari, et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature. 2015;517: 608–611. 10.1038/nature13907 PubMed DOI PMC

Nakato R, Shirahige K. Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation. Briefings in Bioinformatics. 2016: bbw023 10.1093/bib/bbw023 PubMed DOI PMC

Ley Miller, Li Raphael, Mungall Robertson, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England journal of medicine. 2013;368: 2059 10.1056/NEJMoa1301689 PubMed DOI PMC

Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158: 929–944. 10.1016/j.cell.2014.06.049 PubMed DOI PMC

Valent P. Imatinib-resistant chronic myeloid leukemia (CML): Current concepts on pathogenesis and new emerging pharmacologic approaches. Biologics: targets & therapy. 2007;1: 433. PubMed PMC

Cortes JE, Talpaz M, Giles F, O'Brien S, Rios MB, Shan J, et al. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood. 2003;101: 3794–3800. 10.1182/blood-2002-09-2790 PubMed DOI

Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293: 876–880. 10.1126/science.1062538 PubMed DOI

Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal B, et al. Imatinib Mesylate Resistance Through BCR-ABL Independence in Chronic Myelogenous Leukemia. Cancer Research. 2004;64: 672–677. 10.1158/0008-5472.CAN-03-1484 PubMed DOI

Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122: 872 10.1182/blood-2013-05-501569 PubMed DOI PMC

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic acids research. 1995;23: 4407–4414. 10.1093/nar/23.21.4407 PubMed DOI PMC

Mueller UG, Wolfenbarger LL. AFLP genotyping and fingerprinting. Trends in Ecology & Evolution. 1999;14: 389–394. 10.1016/S0169-5347(99)01659-6 PubMed DOI

Bahador A, Raoofian R, Pourakbari B, Taheri M, Hashemizadeh Z, Hashemi FB. Genotypic and Antimicrobial Susceptibility of Carbapenem-resistant Acinetobacter baumannii: Analysis of is Aba Elements and bla OXA-23-like Genes Including a New Variant. Front Microbiol. 2015;6: 1249 10.3389/fmicb.2015.01249 PubMed DOI PMC

Datta S, Budhauliya R, Das B, Chatterjee S, Vanlalhmuaka, Veer V. Next-generation sequencing in clinical virology: Discovery of new viruses. World journal of virology. 2015;4: 265 10.5501/wjv.v4.i3.265 PubMed DOI PMC

Mendelson TC, Shaw KL. Use of AFLP markers in surveys of arthropod diversity. Meth Enzymol. 2005;395: 161–177. 10.1016/S0076-6879(05)95011-8 PubMed DOI

Veenemans J, Overdevest IT, Snelders E, Willemsen I, Hendriks Y, Adesokan A, et al. Next-generation sequencing for typing and detection of resistance genes: performance of a new commercial method during an outbreak of extended-spectrum-beta-lactamase-producing Escherichia coli. J Clin Microbiol. 2014;52: 2454–2460. 10.1128/JCM.00313-14 PubMed DOI PMC

Zhang Z, Parijs, Frederik R D van, Xiao B. The status of AFLP in the genomics era and a pipeline for converting AFLPs into single-locus markers. Mol Breeding. 2014;34: 1245–1260. 10.1007/s11032-014-0113-4 DOI

Prochazka M, Walder K, Xia J. AFLP fingerprinting of the human genome. Hum Genet. 2001;108: 59–65. PubMed

Perrier X, Jacquemoud-Collet JP. DARwin Software. 2006.

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12: 996–1006. 10.1101/gr.229102 Article published online before print in May 2002. PubMed DOI PMC

Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao W, et al. The Dfam database of repetitive DNA families. Nucleic Acids Res. 2016;44: 81 10.1093/nar/gkv1272 PubMed DOI PMC

Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2015.

Altshuler DM, Albers CA, Abecasis GR, et al. A global reference for human genetic variation. Nature. 2015;526: 68–74. 10.1038/nature15393 PubMed DOI PMC

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Posthuma D, Exome Aggregation Consortium [. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536: 285–291. 10.1038/nature19057 PubMed DOI PMC

Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants: Fig 1. Bioinformatics. 2015;31: 3555–3557. 10.1093/bioinformatics/btv402 PubMed DOI PMC

Vekemans X, Beauwens T, Lemaire M, Roldán‐Ruiz I. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology. 2002;11: 139–151. 10.1046/j.0962-1083.2001.01415.x PubMed DOI

Ramsay L, Marchetto MC, Caron M, Chen S, Busche S, Kwan T, et al. Conserved expression of transposon-derived non-coding transcripts in primate stem cells. BMC Genomics. 2017;18: 214 10.1186/s12864-017-3568-y PubMed DOI PMC

Rodić N, Burns KH. Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms? PLoS genetics. 2013;9: e1003402 10.1371/journal.pgen.1003402 PubMed DOI PMC

Kim YC, Jung Y, Chen J, Alhasan AH, Kaewsaard P, Zhang Y, et al. Evidences showing wide presence of small genomic aberrations in chronic lymphocytic leukemia. BMC research notes. 2010;3: 341 10.1186/1756-0500-3-341 PubMed DOI PMC

Rouppe van der Voort, J N, van Zandvoort P, van Eck HJ, Folkertsma RT, Hutten RC, Draaistra J, et al. Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet. 1997;255: 438–447. PubMed

Veselá P, Volařík D, Mráček J. Optimization of AFLP for extremely large genomes over 70 Gb. Molecular Ecology Resources. 2016;16: 933–945. 10.1111/1755-0998.12506 PubMed DOI

Rouppe van der Voort, van Zandvoort P, van Eck HJ, Folkertsma RT, Hutten RC, Draaistra J, et al. Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet. 1997;255: 438–447. PubMed

Gort G, van Hintum T, van Eeuwijk F. Homoplasy corrected estimation of genetic similarity from AFLP bands, and the effect of the number of bands on the precision of estimation. Theor Appl Genet. 2009;119: 397–416. 10.1007/s00122-009-1047-9 PubMed DOI PMC

Caballero A, Quesada H. Homoplasy and distribution of AFLP fragments: an analysis in silico of the genome of different species. Mol Biol Evol. 2010;27: 1139–1151. 10.1093/molbev/msq001 PubMed DOI

Jaruskova M, Curik N, Hercog R, Polivkova V, Motlova E, Benes V, et al. Genotypes of SLC22A4 and SLC22A5 regulatory loci are predictive of the response of chronic myeloid leukemia patients to imatinib treatment. J Exp Clin Cancer Res. 2017;36: 55 10.1186/s13046-017-0523-3 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...