Genotypes of SLC22A4 and SLC22A5 regulatory loci are predictive of the response of chronic myeloid leukemia patients to imatinib treatment

. 2017 Apr 18 ; 36 (1) : 55. [epub] 20170418

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28420426
Odkazy

PubMed 28420426
PubMed Central PMC5395939
DOI 10.1186/s13046-017-0523-3
PII: 10.1186/s13046-017-0523-3
Knihovny.cz E-zdroje

BACKGROUND: Through high-throughput next-generation sequencing of promoters of solute carrier and ATP-binding cassette genes, which encode drug transporters, we aimed to identify SNPs associated with the response to imatinib administered for first-line treatment of patients with chronic myeloid leukemia. METHODS: In silico analysis using publicly available databases was done to select the SLC and ABC genes and their promoters for the next-generation sequencing. SNPs associated with the imatinib response were identified using Fisher's exact probability tests and subjected to the linkage disequilibrium analyses with regulatory loci of concerned genes. We analyzed cumulative achievement of major molecular response and probability of event free survival in relation to identified SNP genotypes in 129 CML patients and performed multivariate analysis for determination of genotypes as independent predictors of outcome. Gene expression analysis of eight cell lines naturally carrying different genotypes was performed to outline an impact of genotypes on the gene expression. RESULTS: We observed significant differences in the frequencies of the rs460089-GC and rs460089-GG (SLC22A4) genotypes among rs2631365-TC (SLC22A5) genotype carriers that were associated with optimal and non-optimal responses, respectively. Loci rs460089 and rs2631365 were in highly significant linkage disequilibrium with 12 regulatory loci in introns of SLC22A4 and SLC22A5 encoding imatinib transporters. Genotype association analysis with the response to imatinib indicated that rs460089-GC carriers had a significantly higher probability of achieving a stable major molecular response (BCR-ABL1 transcript level below or equal to 0.1% in the international scale). In contrast, the rs460089-GG represented a risk factor for imatinib failure, which was significantly higher in rs460089-GG_rs2631365-TC carriers. CONCLUSIONS: This exploratory study depicted potentially important genetic markers predicting outcome of imatinib treatment, which may be helpful for tailoring therapy in clinical practice.

Zobrazit více v PubMed

Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293:876–880. doi: 10.1126/science.1062538. PubMed DOI

Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118:1208–1215. doi: 10.1182/blood-2010-12-326405. PubMed DOI

Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122:872–884. doi: 10.1182/blood-2013-05-501569. PubMed DOI PMC

Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol. 2003;4:75–85. doi: 10.1016/S1470-2045(03)00979-3. PubMed DOI

Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3:281–290. doi: 10.1186/1479-7364-3-3-281. PubMed DOI PMC

Kuwazuru Y, Yoshimura A, Hanada S, Ichikawa M, Saito T, Uozumi K, et al. Expression of the multidrug transporter, P-glycoprotein, in chronic myelogenous leukaemia cells in blast crisis. Br J Haematol. 1990;74:24–29. doi: 10.1111/j.1365-2141.1990.tb02533.x. PubMed DOI

Singh O, Chan JY, Lin K, Heng CC, Chowbay B. SLC22A1-ABCB1 haplotype profiles predict imatinib pharmacokinetics in Asian patients with chronic myeloid leukemia. PLoS One. 2012;7:e51771. doi: 10.1371/journal.pone.0051771. PubMed DOI PMC

He L, Vasiliou K, Nebert DW. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics. 2009;3:195–206. doi: 10.1186/1479-7364-3-2-195. PubMed DOI PMC

White DL, Saunders VA, Dang P, Engler J, Venables A, Zrim S, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood. 2007;110:4064–4072. doi: 10.1182/blood-2007-06-093617. PubMed DOI

Gromicho M, Magalhaes M, Torres F, Dinis J, Fernandes AR, Rendeiro P, et al. Instability of mRNA expression signatures of drug transporters in chronic myeloid leukemia patients resistant to imatinib. Oncol Rep. 2013;29:741–750. PubMed

Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K, et al. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res. 2009;15:4750–4758. doi: 10.1158/1078-0432.CCR-09-0145. PubMed DOI

Angelini S, Soverini S, Ravegnini G, Barnett M, Turrini E, Thornquist M, et al. Association between imatinib transporters and metabolizing enzymes genotype and response in newly diagnosed chronic myeloid leukemia patients receiving imatinib therapy. Haematologica. 2013;98:193–200. doi: 10.3324/haematol.2012.066480. PubMed DOI PMC

Dulucq S, Bouchet S, Turcq B, Lippert E, Etienne G, Reiffers J, et al. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2008;112:2024–2027. doi: 10.1182/blood-2008-03-147744. PubMed DOI

Ni LN, Li JY, Miao KR, Qiao C, Zhang SJ, Qiu HR, et al. Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med Oncol. 2011;28:265–269. doi: 10.1007/s12032-010-9456-9. PubMed DOI

Maffioli M, Camos M, Gaya A, Hernandez-Boluda JC, Alvarez-Larran A, Domingo A, et al. Correlation between genetic polymorphisms of the hOCT1 and MDR1 genes and the response to imatinib in patients newly diagnosed with chronic-phase chronic myeloid leukemia. Leuk Res. 2011;35:1014–1019. doi: 10.1016/j.leukres.2010.12.004. PubMed DOI

Hesselson SE, Matsson P, Shima JE, Fukushima H, Yee SW, Kobayashi Y, et al. Genetic variation in the proximal promoter of ABC and SLC superfamilies: liver and kidney specific expression and promoter activity predict variation. PLoS ONE. 2009;4:e6942. doi: 10.1371/journal.pone.0006942. PubMed DOI PMC

Rozen S and Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa: Humana Press; 2000. p. 365–386. PubMed

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S and Madden T. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. PubMed PMC

OligoAnalyzer 3.1. https://eu.idtdna.com/calc/analyzer.

Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31:3555–3557. doi: 10.1093/bioinformatics/btv402. PubMed DOI PMC

Muller MC, Cross NC, Erben P, Schenk T, Hanfstein B, Ernst T, et al. Harmonization of molecular monitoring of CML therapy in Europe. Leukemia. 2009;23:1957–1963. doi: 10.1038/leu.2009.168. PubMed DOI

Cross NC, White HE, Colomer D, Ehrencrona H, Foroni L, Gottardi E, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29:999–1003. doi: 10.1038/leu.2015.29. PubMed DOI PMC

Branford S, Yeung DT, Parker WT, Roberts ND, Purins L, Braley JA, et al. Prognosis for patients with CML and >10% BCR-ABL1 after 3 months of imatinib depends on the rate of BCR-ABL1 decline. Blood. 2014;124:511–518. doi: 10.1182/blood-2014-03-566323. PubMed DOI

VassarStats: Website for Statistical Computation. http://vassarstats.net.

Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–1797. doi: 10.1101/gr.137323.112. PubMed DOI PMC

Jain P, Kantarjian H, Nazha A, O’Brien S, Jabbour E, Romo CG, et al. Early responses predict better outcomes in patients with newly diagnosed chronic myeloid leukemia: results with four tyrosine kinase inhibitor modalities. Blood. 2013;121:4867–4874. doi: 10.1182/blood-2013-03-490128. PubMed DOI PMC

Polillo M, Galimberti S, Barate C, Petrini M, Danesi R, Di Paolo A. Pharmacogenetics of BCR/ABL inhibitors in chronic myeloid leukemia. Int J Mol Sci. 2015;16:22811–22829. doi: 10.3390/ijms160922811. PubMed DOI PMC

Lee AM, Wu CT. Enhancer-promoter communication at the yellow gene of Drosophila melanogaster: diverse promoters participate in and regulate trans interactions. Genetics. 2006;174:1867–1880. doi: 10.1534/genetics.106.064121. PubMed DOI PMC

Ou SA, Chang E, Lee S, So K, Wu CT, Morris JR. Effects of chromosomal rearrangements on transvection at the yellow gene of Drosophila melanogaster. Genetics. 2009;183:483–496. doi: 10.1534/genetics.109.106559. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...