The SNP rs460089 in the gene promoter of the drug transporter OCTN1 has prognostic value for treatment-free remission in chronic myeloid leukemia patients treated with imatinib
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
00023736
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NCN 2018/31/B/NZ6/03361
Narodowe Centrum Nauki (National Science Centre)
PubMed
38129513
PubMed Central
PMC10844071
DOI
10.1038/s41375-023-02109-2
PII: 10.1038/s41375-023-02109-2
Knihovny.cz E-resources
- MeSH
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive * drug therapy genetics MeSH
- Imatinib Mesylate therapeutic use MeSH
- Protein Kinase Inhibitors therapeutic use MeSH
- Humans MeSH
- Membrane Transport Proteins therapeutic use MeSH
- Prognosis MeSH
- Antineoplastic Agents * adverse effects MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Imatinib Mesylate MeSH
- Protein Kinase Inhibitors MeSH
- Membrane Transport Proteins MeSH
- Antineoplastic Agents * MeSH
Membrane transporters are important determinants of drug bioavailability. Their expression and activity affect the intracellular drug concentration in leukemic cells impacting response to therapy. Pharmacogenomics represents genetic markers that reflect allele arrangement of genes encoding drug transporters associated with treatment response. In previous work, we identified SNP rs460089 located in the promotor of SLC22A4 gene encoding imatinib transporter OCTN1 as influential on response of patients with chronic myeloid leukemia treated with imatinib. Patients with rs460089-GC pharmacogenotype had significantly superior response to first-line imatinib treatment compared to patients with rs460089-GG. This study investigated whether pharmacogenotypes of rs460089 are associated with sustainability of treatment-free remission (TFR) in patients from the EUROpean Stop Kinase Inhibitor (EURO-SKI) trial. In the learning sample, 176 patients showed a significantly higher 6-month probability of molecular relapse free survival (MRFS) in patients with GC genotype (73%, 95% CI: 60-82%) compared to patients with GG (51%, 95% CI: 41-61%). Also over time, patients with GC genotype had significantly higher MRFS probabilities compared with patients with GG (HR: 0.474, 95% CI: 0.280-0.802, p = 0.0054). Both results were validated with data on 93 patients from the Polish STOP imatinib study. In multiple regression models, in addition to the investigated genotype, duration of TKI therapy (EURO-SKI trial) and duration of deep molecular response (Polish study) were identified as independent prognostic factors. The SNP rs460089 was found as an independent predictor of TFR.
Bergonie Institute Bordeaux Inserm U1218 University of Bordeaux Bordeaux France
Department of General Pathology Pomeranian Medical University Szczecin Poland
Department of Hematology Jagiellonian University Hospital Kraków Poland
Department of Hematology Medical University of Lodz Copernicus Memorial Hospital Lodz Poland
Department of Hematology St Olavs Hospital Trondheim Norway
Dept of Hematology Oncology and Radiation Physics Skåne University Hospital Lund Sweden
Experimental Hematooncology Department University of Lublin Lublin Poland
Hematology and Bone Marrow Transplantation Department Medical Silesian University Katowice Poland
Hematology and Transplantology Department Medical University of Gdańsk Gdańsk Poland
Hematology Clinic National and kapodistrian University Athens Greece
Hematology Department Medical University of Białystok Białystok Poland
Hematology Oncology and Internal Medicine Department Medical University of Warsaw Warsaw Poland
Institute of Hematology and Blood Transfusion Prague Czech Republic
Onkologische Praxis Heilbronn Heilbronn Germany
Universitätsklinikum Würzburg Medizinische Klinik und Poliklinik 2 Würzburg Germany
See more in PubMed
Burger H, van Tol H, Brok M, Wiemer EA, de Bruijn EA, Guetens G, et al. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther. 2005;4:747–52. doi: 10.4161/cbt.4.7.1826. PubMed DOI
Hamada A, Miyano H, Watanabe H, Saito H. Interaction of imatinib mesilate with human P-glycoprotein. J Pharm Exp Ther. 2003;307:824–8. doi: 10.1124/jpet.103.055574. PubMed DOI
Burger H, Nooter K. Pharmacokinetic resistance to imatinib mesylate: role of the ABC drug pumps ABCG2 (BCRP) and ABCB1 (MDR1) in the oral bioavailability of imatinib. Cell Cycle. 2004;3:1502–5. doi: 10.4161/cc.3.12.1331. PubMed DOI
Gromicho M, Magalhaes M, Torres F, Dinis J, Fernandes AR, Rendeiro P, et al. Instability of mRNA expression signatures of drug transporters in chronic myeloid leukemia patients resistant to imatinib. Oncol Rep. 2013;29:741–50. doi: 10.3892/or.2012.2153. PubMed DOI
White DL, Saunders VA, Dang P, Engler J, Venables A, Zrim S, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood. 2007;110:4064–72. doi: 10.1182/blood-2007-06-093617. PubMed DOI
Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA, et al. Interaction of imatinib with human organic ion carriers. Clin Cancer Res. 2008;14:3141–8. doi: 10.1158/1078-0432.CCR-07-4913. PubMed DOI
Racil Z, Razga F, Polakova KM, Buresova L, Polivkova V, Dvorakova D, et al. Assessment of adenosine triphosphate-binding cassette subfamily B member 1 (ABCB1) mRNA expression in patients with de novo chronic myelogenous leukemia: the role of different cell types. Leuk Lymphoma. 2011;52:331–4. doi: 10.3109/10428194.2010.533220. PubMed DOI
Razga F, Racil Z, Machova Polakova K, Buresova L, Klamova H, Zackova D, et al. The predictive value of human organic cation transporter 1 and ABCB1 expression levels in different cell populations of patients with de novo chronic myelogenous leukemia. Int J Hematol. 2011;94:303–6. doi: 10.1007/s12185-011-0924-6. PubMed DOI
Giannoudis A, Wang L, Jorgensen AL, Xinarianos G, Davies A, Pushpakom S, et al. The hOCT1 SNPs M420del and M408V alter imatinib uptake and M420del modifies clinical outcome in imatinib-treated chronic myeloid leukemia. Blood. 2013;121:628–37. doi: 10.1182/blood-2012-01-405035. PubMed DOI
Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K, et al. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res. 2009;15:4750–8. doi: 10.1158/1078-0432.CCR-09-0145. PubMed DOI
Dulucq S, Bouchet S, Turcq B, Lippert E, Etienne G, Reiffers J, et al. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2008;112:2024–7. doi: 10.1182/blood-2008-03-147744. PubMed DOI
Maffioli M, Camos M, Gaya A, Hernandez-Boluda JC, Alvarez-Larran A, Domingo A, et al. Correlation between genetic polymorphisms of the hOCT1 and MDR1 genes and the response to imatinib in patients newly diagnosed with chronic-phase chronic myeloid leukemia. Leuk Res. 2011;35:1014–9. doi: 10.1016/j.leukres.2010.12.004. PubMed DOI
Ni LN, Li JY, Miao KR, Qiao C, Zhang SJ, Qiu HR, et al. Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med Oncol. 2011;28:265–9. doi: 10.1007/s12032-010-9456-9. PubMed DOI
Jaruskova M, Curik N, Hercog R, Polivkova V, Motlova E, Benes V, et al. Genotypes of SLC[A4 and SLC22A5 regulatory loci are predictive of the response of chronic myeloid leukemia patients to imatinib treatment. J Exp Clin Cancer Res. 2017;36:55. doi: 10.1186/s13046-017-0523-3. PubMed DOI PMC
Angelini S, Soverini S, Ravegnini G, Barnett M, Turrini E, Thornquist M, et al. Association between imatinib transporters and metabolizing enzymes genotype and response in newly diagnosed chronic myeloid leukemia patients receiving imatinib therapy. Haematologica. 2013;98:193–200. doi: 10.3324/haematol.2012.066480. PubMed DOI PMC
Saussele S, Richter J, Guilhot J, Gruber FX, Hjorth-Hansen H, Almeida A, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19:747–57. doi: 10.1016/S1470-2045(18)30192-X. PubMed DOI
Cross NC, White HE, Colomer D, Ehrencrona H, Foroni L, Gottardi E, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29:999–1003. doi: 10.1038/leu.2015.29. PubMed DOI PMC
Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31:3555–7. doi: 10.1093/bioinformatics/btv402. PubMed DOI PMC
Wilson EB. Probable inference, the law of succession, and statistical inference. J Am Stat Assoc. 1927;22:209–12. doi: 10.1080/01621459.1927.10502953. DOI
Sy JP, Taylor JM. Estimation in a Cox proportional hazards cure model. Biometrics. 2000;56:227–36. doi: 10.1111/j.0006-341X.2000.00227.x. PubMed DOI
Corbiere F, Joly P. A SAS macro for parametric and semiparametric mixture cure models. Comput Methods Prog Biomed. 2007;85:173–80. doi: 10.1016/j.cmpb.2006.10.008. PubMed DOI
Machova Polakova K, Albeer A, Polivkova V, Vlcanova K, Fabarius A, Klamova H, et al. Genotypes of the gene encoding the membrane transporter SLC22A4 are associated with molecular relapse-free survival after discontinuation of imatinib therapy in patients with chronic myeloid leukemia. Blood. 2019;134:1647. doi: 10.1182/blood-2019-129710. DOI
Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34:966–84. doi: 10.1038/s41375-020-0776-2. PubMed DOI PMC
Clark RE, Polydoros F, Apperley JF, Milojkovic D, Rothwell K, Pocock C, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol. 2019;6:e375–83. doi: 10.1016/S2352-3026(19)30094-8. PubMed DOI
Mahon FX, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini F. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11:1029–35. doi: 10.1016/S1470-2045(10)70233-3. PubMed DOI
Nicolini FE, Dulucq S, Boureau L, Cony-Makhoul P, Charbonnier A, Escoffre-Barbe M, et al. The evaluation of residual disease by digital PCR, and TKI duration are critical predictive factors for molecular recurrence after for stopping imatinib first-line in chronic phase CML patients: results of the STIM2 study. Blood. 2018;132:462. doi: 10.1182/blood-2018-99-113029. PubMed DOI
Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122:515–22. doi: 10.1182/blood-2013-02-483750. PubMed DOI
Ilander M, Olsson-Strömberg U, Schlums H, Guilhot J, Brück O, Lähteenmäki H, et al. Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia. Leukemia. 2017;31:1108–116. doi: 10.1038/leu.2016.360. PubMed DOI PMC
Irani YD, Hughes A, Clarson J, Kok CH, Shanmuganathan N, White DL, et al. Successful treatment-free remission in chronic myeloid leukaemia and its association with reduced immune suppressors and increased natural killer cells. Br J Haematol. 2020;191:433–41. doi: 10.1111/bjh.16718. PubMed DOI
Schütz C, Inselmann S, Saussele S, Dietz CT, Müller MC, Eigendorff E, et al. Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML. Leukemia. 2017;32:1–8. PubMed
Machova Polakova K, Zizkova H, Zuna J, Motlova E, Hovorkova L, Gottschalk A, et al. Analysis of chronic myeloid leukaemia during deep molecular response by genomic PCR: a traffic light stratification model with impact on treatment-free remission. Leukemia. 2020;34:2113–124. doi: 10.1038/s41375-020-0882-1. PubMed DOI
Pagani IS, Dang P, Saunders VA, Grose R, Shanmuganathan N, Kok CH, et al. Lineage of measurable residual disease in patients with chronic myeloid leukemia in treatment-free remission. Leukemia. 2020;34:1052–61. doi: 10.1038/s41375-019-0647-x. PubMed DOI
Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8:1018–29. doi: 10.1016/S1470-2045(07)70342-X. PubMed DOI