Transcriptome-based mining and expression profiling of Pythium responsive transcription factors in Zingiber sp
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 38(1397)/14EMR-II
Council of Scientific and Industrial Research
PubMed
30415383
DOI
10.1007/s10142-018-0644-6
PII: 10.1007/s10142-018-0644-6
Knihovny.cz E-zdroje
- Klíčová slova
- Biotic stress, Defense response, Ginger, Plant-pathogen interaction, Transcriptional reprogramming,
- MeSH
- fyziologický stres MeSH
- imunita rostlin * MeSH
- molekulární evoluce MeSH
- Pythium patogenita MeSH
- responzivní elementy MeSH
- rostlinné proteiny genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- transkriptom * MeSH
- zázvorníkovité genetika imunologie mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinné proteiny MeSH
- transkripční faktory MeSH
Transcription factors (TFs) fine-tune the host defense transcriptome in response to pathogen invasions. No information is available on Zingiber zerumbet (Zz) TFs involved in defense response against Pythium myriotylum. Here, we provide a global identification, characterization, and temporal expression profiling of Zz TFs following an incompatible interaction with P. myriotylum using a transcriptome sequencing approach. We identified a total of 903 TFs belonging to 96 families based on their conserved domains. Evolutionary analysis clustered the Zz TFs according to their phylogenetic affinity, providing glimpses of their functional diversities. High throughput expression array analysis highlighted a complex interplay between activating and repressing transcription factors in fine-tuning Zz defense response against P. myriotylum. The high differential modulation of TFs involved in cell wall fortification, lignin biosynthesis, and SA/JA hormone crosstalk allows us to envisage that this mechanism plays a central role in restricting P. myriotylum proliferation in Zz. This study lays a solid foundation and provides valuable resources for the investigation of the evolutionary history and biological functions of Zz TF genes involved in defense response.
Department of Biotechnology Kerala Agricultural University Vellayani Thiruvananthapuram 695522 India
Department of Botany Sacred Heart College Thevara Ernakulam 682013 India
Zobrazit více v PubMed
Eur J Biochem. 1999 Jun;262(2):247-57 PubMed
Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11655-60 PubMed
Curr Opin Plant Biol. 2001 Oct;4(5):447-56 PubMed
J Biol Chem. 2002 Mar 22;277(12):10555-61 PubMed
Biochem Biophys Res Commun. 2002 Jan 25;290(3):998-1009 PubMed
Trends Plant Sci. 2002 Mar;7(3):106-11 PubMed
Curr Opin Plant Biol. 2002 Oct;5(5):430-6 PubMed
Plant Cell. 2003 Aug;15(8):1749-70 PubMed
Plant Cell. 2004 Feb;16(2):319-31 PubMed
Plant Cell. 2004 Jul;16(7):1938-50 PubMed
Trends Plant Sci. 2005 Feb;10(2):71-8 PubMed
Bioinformatics. 2005 Sep 15;21(18):3674-6 PubMed
Plant Physiol. 2005 Oct;139(2):949-59 PubMed
Plant J. 2006 May;46(3):477-91 PubMed
Bioinformatics. 2006 Jul 1;22(13):1658-9 PubMed
Proteins. 2006 Aug 15;64(3):643-51 PubMed
Plant Physiol. 2006 Jun;141(2):373-8 PubMed
Plant J. 2006 Nov;48(4):592-605 PubMed
Nature. 2006 Nov 16;444(7117):323-9 PubMed
Plant J. 2007 Apr;50(1):128-39 PubMed
Curr Opin Plant Biol. 2007 Aug;10(4):366-71 PubMed
Nucleic Acids Res. 2008 Jan;36(Database issue):D991-8 PubMed
Plant Physiol. 2008 Mar;146(3):1293-304 PubMed
Plant Cell. 2008 Mar;20(3):752-67 PubMed
Genome Res. 2008 May;18(5):821-9 PubMed
J Biosci. 2008 Mar;33(1):81-90 PubMed
Plant J. 2008 Dec;56(6):935-47 PubMed
Nat Chem Biol. 2009 May;5(5):308-16 PubMed
Gene. 2009 Sep 1;444(1-2):10-23 PubMed
Cell Res. 2009 Nov;19(11):1279-90 PubMed
Plant J. 2010 Jan;61(2):200-10 PubMed
Genes Dev. 2009 Nov 1;23(21):2449-54 PubMed
Annu Rev Plant Biol. 2010;61:681-704 PubMed
Plant Cell Environ. 2010 Oct;33(10):1597-613 PubMed
Trends Plant Sci. 2010 Oct;15(10):573-81 PubMed
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15281-6 PubMed
Nature. 2011 Feb 3;470(7332):110-4 PubMed
Nat Biotechnol. 2011 May 15;29(7):644-52 PubMed
Genomics. 2011 Aug;98(2):128-36 PubMed
J Exp Bot. 2012 Feb;63(4):1619-36 PubMed
Plant Physiol. 2012 May;159(1):266-85 PubMed
Trends Plant Sci. 2012 Jun;17(6):369-81 PubMed
J Exp Bot. 2012 Jun;63(10):3523-43 PubMed
New Phytol. 2012 Jul;195(2):450-60 PubMed
Evolution. 2012 Jun;66(6):1833-48 PubMed
Mol Plant Microbe Interact. 2013 Feb;26(2):151-9 PubMed
Plant Cell. 2012 Sep;24(9):3530-57 PubMed
Mol Plant. 2013 May;6(3):686-703 PubMed
Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15 PubMed
Int J Mol Sci. 2013 Apr 10;14(4):7815-28 PubMed
Plant Sci. 2013 Jun;207:79-87 PubMed
Front Plant Sci. 2013 Apr 23;4:97 PubMed
Front Microbiol. 2013 Sep 03;4:248 PubMed
Plant Sci. 2013 Dec;213:79-87 PubMed
Front Plant Sci. 2014 Feb 10;5:17 PubMed
Curr Opin Plant Biol. 2014 Aug;20:35-46 PubMed
Phytochemistry. 2015 Apr;112:54-62 PubMed
PLoS One. 2014 Oct 03;9(10):e109920 PubMed
Trends Plant Sci. 2015 Feb;20(2):91-101 PubMed
PLoS One. 2014 Nov 19;9(11):e113092 PubMed
New Phytol. 2015 May;206(3):932-47 PubMed
Brief Funct Genomics. 2015 Jul;14(4):260-7 PubMed
Mol Plant. 2015 May;8(5):689-708 PubMed
Nucleic Acids Res. 2015 Jul 1;43(W1):W566-70 PubMed
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10533-8 PubMed
Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93 PubMed
Front Plant Sci. 2015 Oct 26;6:910 PubMed
Front Plant Sci. 2015 Dec 24;6:1157 PubMed
Front Plant Sci. 2016 Feb 23;7:199 PubMed
Sci Rep. 2016 Mar 07;6:22783 PubMed
Sci Rep. 2016 Mar 16;6:23072 PubMed
Mol Biol Evol. 2016 Jul;33(7):1870-4 PubMed
Sci Rep. 2016 Apr 21;6:24008 PubMed
Front Plant Sci. 2016 Jun 03;7:760 PubMed
Sci Rep. 2016 Jul 28;6:30412 PubMed
Mol Plant. 2016 Dec 5;9(12):1667-1670 PubMed
Plant Physiol Biochem. 2017 Mar;112:117-128 PubMed
Mol Biol Evol. 2017 Aug 1;34(8):2115-2122 PubMed
Plant Cell Physiol. 2018 Feb 1;59(2):290-303 PubMed
Genetics. 1995 May;140(1):345-56 PubMed
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed
Trends Biochem Sci. 1996 Feb;21(2):59-64 PubMed