Derivatization of Methylglyoxal for LC-ESI-MS Analysis-Stability and Relative Sensitivity of Different Derivatives

. 2018 Nov 16 ; 23 (11) : . [epub] 20181116

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30453519

Grantová podpora
BI 1340/4-1 Deutsche Forschungsgemeinschaft
Dmitrij-Mendeleev-Programme Deutscher Akademischer Austauschdienst
Training Mobility Programme Erasmus+

The great research interest in the quantification of reactive carbonyl compounds (RCCs), such as methylglyoxal (MGO) in biological and environmental samples, is reflected by the fact that several publications have described specific strategies to perform this task. Thus, many reagents have also been reported for the derivatization of RCCs to effectively detect and quantify the resulting compounds using sensitive techniques such as liquid chromatography coupled with mass spectrometry (LC-MS). However, the choice of the derivatization protocol is not always clear, and a comparative evaluation is not feasible because detection limits from separate reports and determined with different instruments are hardly comparable. Consequently, for a systematic comparison, we tested 21 agents in one experimental setup for derivatization of RCCs prior to LC-MS analysis. This consisted of seven commonly employed reagents and 14 similar reagents, three of which were designed and synthesized by us. All reagents were probed for analytical responsiveness of the derivatives and stability of the reaction mixtures. The results showed that derivatives of 4-methoxyphenylenediamine and 3-methoxyphenylhydrazine-reported here for the first time for derivatization of RCCs-provided a particularly high responsiveness with ESI-MS detection. We applied the protocol to investigate MGO contamination of laboratory water and show successful quantification in a lipoxidation experiment. In summary, our results provide valuable information for scientists in establishing accurate analysis of RCCs.

Zobrazit více v PubMed

Dakin H.D., Dudley H.W. An enzyme concerned with the formation of hydroxy acids from ketonic aldehydes. J. Biol. Chem. 1913;14:155–157.

Dakin H.D., Dudley H.W. The interconversion of alpha-amino acids, alpha-hydroxy acids and alpha-ketonic aldehydes. Part II. J. Biol. Chem. 1913;15:127–143.

Neuberg C. Über die Zerstörung von Milchsäurealdehyd und Methylglyoxal durch tierische Organe. Biochem. Z. 1913;49:502–506.

Beisswenger P.J. Methylglyoxal in diabetes: Link to treatment, glycemic control and biomarkers of complications. Biochem. Soc. Trans. 2014;42:450–456. doi: 10.1042/BST20130275. PubMed DOI

Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–820. doi: 10.1038/414813a. PubMed DOI

Szent-Györgyi A. The living state and cancer. Proc. Natl. Acad. Sci. USA. 1977;74:2844–2847. doi: 10.1073/pnas.74.7.2844. PubMed DOI PMC

Baynes J.W., Thorpe S.R. Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med. 2000;28:1708–1716. doi: 10.1016/S0891-5849(00)00228-8. PubMed DOI

Thornalley P.J. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems - role in ageing and disease. Drug Metabol. Drug Interact. 2008;23:125–150. doi: 10.1515/DMDI.2008.23.1-2.125. PubMed DOI PMC

Hovatta I., Tennant R.S., Helton R., Marr R.A., Singer O., Redwine J.M., Ellison J.A., Schadt E.E., Verma I.M., Lockhart D.J., et al. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature. 2005;438:662–666. doi: 10.1038/nature04250. PubMed DOI

Benton C.S., Miller B.H., Skwerer S., Suzuki O., Schultz L.E., Cameron M.D., Marron J.S., Pletcher M.T., Wiltshire T. Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains. Psychopharmacology. 2012;221:297–315. doi: 10.1007/s00213-011-2574-z. PubMed DOI PMC

Allaman I., Bélanger M., Magistretti P.J. Methylglyoxal, the dark side of glycolysis. Front. Neurosci. 2015;9:23. doi: 10.3389/fnins.2015.00023. PubMed DOI PMC

Semchyshyn H.M. Reactive carbonyl species in vivo: Generation and dual biological effects. Sci. World J. 2014;2014 doi: 10.1155/2014/417842. PubMed DOI PMC

Fu T.-M., Jacob D.J., Wittrock F., Burrows J.P., Vrekoussis M., Henze D.K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008;113 doi: 10.1029/2007JD009505. DOI

Vogel M., Büldt A., Karst U. Hydrazine reagents as derivatizing agents in environmental analysis—A critical review. Fresenius J. Anal. Chem. 2000;366:781–791. doi: 10.1007/s002160051572. PubMed DOI

Chalmers R.A., Watts R.W.E. Derivatives for the identification and quantitative determination of some keto- and aldo-carboxylic acids by gas-liquid chromatography. Analyst. 1972;97:951–957. doi: 10.1039/an9729700951. PubMed DOI

Kobayashi K., Tanaka M., Kawai S. Gas chromatographic determination of low-molecular-weight carbonyl compounds in aqueous solution as their O-(2,3,4,5,6-pentafluorobenzyl) oximes. J. Chromatogr. A. 1980;187:413–417. doi: 10.1016/S0021-9673(00)80474-4. DOI

McLellan A.C., Phillips S.A., Thornalley P.J. The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Anal. Biochem. 1992;206:17–23. doi: 10.1016/S0003-2697(05)80005-3. PubMed DOI

Rotondo A., Bruno G., Brancatelli G., Nicolò F., Armentano D. A phenyl-salicyliden-imine as a suitable ligand to build functional materials. Inorganica Chim. Acta. 2009;362:247–252. doi: 10.1016/j.ica.2008.01.040. DOI

Pal R., Kim K.-H. Experimental choices for the determination of carbonyl compounds in air. J. Sep. Sci. 2007;30:2708–2718. doi: 10.1002/jssc.200700206. PubMed DOI

Brady O.L., Elsmie G.V. The use of 2,4-dinitrophenylhydrazine as a reagent for aldehydes and ketones. Analyst. 1926;51:77–78. doi: 10.1039/an9265100077. DOI

Fischer E. Über einige Osazone und Hydrazone der Zuckergruppe. Ber. Dtsch. Chem. Ges. 1894;27:2486–2492. doi: 10.1002/cber.189402702249. DOI

Oppermann H., Ding Y., Sharma J., Berndt Paetz M., Meixensberger J., Gaunitz F., Birkemeyer C. Metabolic response of glioblastoma cells associated with glucose withdrawal and pyruvate substitution as revealed by GC-MS. Nutr. Metab. 2016;13 doi: 10.1186/s12986-016-0131-9. PubMed DOI PMC

Bilova T., Lukasheva E., Brauch D., Greifenhagen U., Paudel G., Tarakhovskaya E., Frolova N., Mittasch J., Balcke G.U., Tissier A., et al. A snapshot of the plant glycated proteome-structural, functional, and mechanistic aspects. J. Biol. Chem. 2016;291:7621–7636. doi: 10.1074/jbc.M115.678581. PubMed DOI PMC

Eggink M., Wijtmans M., Ekkebus R., Lingeman H., de Esch I.J.P., Kool J., Niessen W.M.A., Irth H. Development of a selective ESI-MS derivatization reagent: Synthesis and optimization for the analysis of aldehydes in biological mixtures. Anal. Chem. 2008;80:9042–9051. doi: 10.1021/ac801429w. PubMed DOI

Milkovska-Stamenova S., Schmidt R., Frolov A., Birkemeyer C. GC-MS Method for the Quantitation of Carbohydrate Intermediates in Glycation Systems. J. Agric. Food Chem. 2015;63:5911–5919. doi: 10.1021/jf505757m. PubMed DOI

Ojeda A.G., Wrobel K., Escobosa A.R.C., Garay-Sevilla M.E., Wrobel K. High-performance liquid chromatography determination of glyoxal. methylglyoxal, and diacetyl in urine using 4-methoxy-o-phenylenediamine as derivatizing reagent. Anal. Biochem. 2014;449:52–58. doi: 10.1016/j.ab.2013.12.014. PubMed DOI

Thornalley P.J., Yurek-George A., Argirov O.K. Kinetics and mechanism of the reaction of aminoguanidine with the α-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions. Biochem. Pharmacol. 2000;60:55–65. doi: 10.1016/S0006-2952(00)00287-2. PubMed DOI

Kiontke A., Oliveira-Birkmeier A., Opitz A., Birkemeyer C. Electrospray ionization efficiency is dependent on different molecular descriptors with respect to solvent pH and instrumental configuration. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0167502. PubMed DOI PMC

Hoyen H., Vogel M., Karst U. Recent developments in the determination of formaldehyde in air samples using derivatizing agents. Air Qual. Control. 2003;63:295–298.

Zwiener C., Glauner T., Frimmel F.H. Method optimization for the determination of carbonyl compounds in disinfected water by DNPH derivatization and LC-ESI-MS-MS. Anal. Bioanal. Chem. 2002;372:615–621. doi: 10.1007/s00216-002-1233-y. PubMed DOI

Nemet I., Varga-Defterdarović L., Turk Z. Preparation and quantification of methylglyoxal in human plasma using reverse-phase high-performance liquid chromatography. Clin. Biochem. 2004;37:875–881. doi: 10.1016/j.clinbiochem.2004.05.024. PubMed DOI

Milic I., Hoffmann R., Fedorova M. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry. Anal. Chem. 2013;85:156–162. doi: 10.1021/ac302356z. PubMed DOI

Star-Weinstock M., Williamson B.L., Dey S., Pillai S., Purkayastha S. LC-ESI-MS/MS analysis of testosterone at sub-picogram levels using a novel derivatization reagent. Anal. Chem. 2012;84:9310–9317. doi: 10.1021/ac302036r. PubMed DOI

ChemAxon’s Solubility Predictor. [(accessed on 7 May 2018)]; Available online: https://docs.chemaxon.com/display/docs/Solubility+Predictor.

Abburi R., Kalkhof S., Oehme R., Kiontke A., Birkemeyer C. Artifacts in amine analysis from anodic oxidation of organic solvents upon electrospray ionization for mass spectrometry. Eur. J. Mass Spectrom. 2012;18:301–312. doi: 10.1255/ejms.1187. PubMed DOI

Hardie R.L., Thomson R.H. 488. The oxidation of phenylhydrazine. J. Chem. Soc. 1957;0:2512–2518. doi: 10.1039/jr9570002512. DOI

Huang P.-K.C., Kosower E.M. Diazenes. III. Properties of phenyldiazene. J. Am. Chem. Soc. 1968;90:2367–2376. doi: 10.1021/ja01011a029. DOI

Henning C., Liehr K., Girndt M., Ulrich C., Glomb M.A. Extending the spectrum of α-dicarbonyl compounds in vivo. J. Biol. Chem. 2014;289:28676–28688. doi: 10.1074/jbc.M114.563593. PubMed DOI PMC

Enders E., Kolbah D., Korunčev D., Müller E. Methoden der Organischen Chemie. 4th ed. Thieme; Stuttgart, Germany: 1967. Hydrazines, Azines; Azo-, Azoxy-Compounds I; Diazenes I.

Milic I., Fedorova M. Derivatization and detection of small aliphatic and lipid-bound carbonylated lipid peroxidation products by ESI-MS. Methods Mol. Biol. 2015;1208:3–20. doi: 10.1007/978-1-4939-1441-8_1. PubMed DOI

Nemet I., Varga-Defterdarović L., Turk Z. Methylglyoxal in food and living organisms. Mol. Nutr. Food Res. 2006;50:1105–1117. doi: 10.1002/mnfr.200600065. PubMed DOI

Rodríguez-Cáceres M.I., Palomino-Vasco M., Mora-Diez N., Acedo-Valenzuela M.I. Novel HPLC—fluorescence methodology for the determination of methylglyoxal and glyoxal. Application to the analysis of monovarietal wines “Ribera del Guadiana”. Food Chem. 2015;187:159–165. doi: 10.1016/j.foodchem.2015.04.103. PubMed DOI

Hamberg M. Autoxidation of linoleic acid: Isolation and structure of four dihydroxyoctadecadienoic acids. Biochim. Biophys. Acta Lipids Lipid Metab. 1983;752:353–356. doi: 10.1016/0005-2760(83)90134-0. DOI

Banni S., Contini M.S., Angioni E., Deiana M., Dessì M.A., Melis M.P., Carta G., Corongiu F.P. A novel approach to study linoleic acid autoxidation: Importance of simultaneous detection of the substrate and its derivative oxidation products. Free Radic. Res. 1996;25:43–53. doi: 10.3109/10715769609145655. PubMed DOI

Wang Y., Cui P. Reactive carbonyl species derived from Omega-3 and Omega-6 fatty acids. J. Agric. Food Chem. 2015;63:6293–6296. doi: 10.1021/acs.jafc.5b02376. PubMed DOI

Shibamoto T. Analytical methods for trace levels of reactive carbonyl compounds formed in lipid peroxidation systems. J. Pharmaceut. Biomed. Anal. 2006;41:12–25. doi: 10.1016/j.jpba.2006.01.047. PubMed DOI

Qi B.-L., Liu P., Wang Q.-Y., Cai W.-J., Yuan B.-F., Feng Y.-Q. Derivatization for liquid chromatography-mass spectrometry. Trends Anal. Chem. TrAC. 2014;59:121–132. doi: 10.1016/j.trac.2014.03.013. DOI

El-Maghrabey M.H., Kishikawa N., Ohyama K., Imazato T., Ueki Y., Kuroda N. Determination of human serum semicarbazide-sensitive amine oxidase activity via flow injection analysis with fluorescence detection after online derivatization of the enzymatically produced benzaldehyde with 1,2-diaminoanthraquinone. Anal. Chim. Acta. 2015;881:139–147. doi: 10.1016/j.aca.2015.04.006. PubMed DOI

Grosjean D., Fung K. Collection efficiencies of cartridges and microimpingers for sampling of aldehydes in air as 2,4-dinitrophenylhydrazones. Anal. Chem. 2002;54:1221–1224. doi: 10.1021/ac00244a054. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...