Derivatization of Methylglyoxal for LC-ESI-MS Analysis-Stability and Relative Sensitivity of Different Derivatives
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BI 1340/4-1
Deutsche Forschungsgemeinschaft
Dmitrij-Mendeleev-Programme
Deutscher Akademischer Austauschdienst
Training Mobility Programme
Erasmus+
PubMed
30453519
PubMed Central
PMC6278547
DOI
10.3390/molecules23112994
PII: molecules23112994
Knihovny.cz E-zdroje
- Klíčová slova
- carbonyl derivatization, hydroxylamine, lipoxidation, phenylenediamine, phenylhydrazine, water analysis,
- MeSH
- chemické látky znečišťující vodu analýza MeSH
- chromatografie kapalinová metody MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- laboratoře normy MeSH
- limita detekce MeSH
- pyruvaldehyd analýza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- pyruvaldehyd MeSH
The great research interest in the quantification of reactive carbonyl compounds (RCCs), such as methylglyoxal (MGO) in biological and environmental samples, is reflected by the fact that several publications have described specific strategies to perform this task. Thus, many reagents have also been reported for the derivatization of RCCs to effectively detect and quantify the resulting compounds using sensitive techniques such as liquid chromatography coupled with mass spectrometry (LC-MS). However, the choice of the derivatization protocol is not always clear, and a comparative evaluation is not feasible because detection limits from separate reports and determined with different instruments are hardly comparable. Consequently, for a systematic comparison, we tested 21 agents in one experimental setup for derivatization of RCCs prior to LC-MS analysis. This consisted of seven commonly employed reagents and 14 similar reagents, three of which were designed and synthesized by us. All reagents were probed for analytical responsiveness of the derivatives and stability of the reaction mixtures. The results showed that derivatives of 4-methoxyphenylenediamine and 3-methoxyphenylhydrazine-reported here for the first time for derivatization of RCCs-provided a particularly high responsiveness with ESI-MS detection. We applied the protocol to investigate MGO contamination of laboratory water and show successful quantification in a lipoxidation experiment. In summary, our results provide valuable information for scientists in establishing accurate analysis of RCCs.
Department of Bioorganic Chemistry Leibniz Institute of Plant Biochemistry 06120 Halle Germany
Department of Chemistry Krishna University Machilipatnam 521001 Andhra Pradesh India
Institute of Pharmacy Faculty of Medicine University of Leipzig 04103 Leipzig Germany
Library of the Russian Academy of Sciences Saint Petersburg 199034 Russia
Zobrazit více v PubMed
Dakin H.D., Dudley H.W. An enzyme concerned with the formation of hydroxy acids from ketonic aldehydes. J. Biol. Chem. 1913;14:155–157.
Dakin H.D., Dudley H.W. The interconversion of alpha-amino acids, alpha-hydroxy acids and alpha-ketonic aldehydes. Part II. J. Biol. Chem. 1913;15:127–143.
Neuberg C. Über die Zerstörung von Milchsäurealdehyd und Methylglyoxal durch tierische Organe. Biochem. Z. 1913;49:502–506.
Beisswenger P.J. Methylglyoxal in diabetes: Link to treatment, glycemic control and biomarkers of complications. Biochem. Soc. Trans. 2014;42:450–456. doi: 10.1042/BST20130275. PubMed DOI
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–820. doi: 10.1038/414813a. PubMed DOI
Szent-Györgyi A. The living state and cancer. Proc. Natl. Acad. Sci. USA. 1977;74:2844–2847. doi: 10.1073/pnas.74.7.2844. PubMed DOI PMC
Baynes J.W., Thorpe S.R. Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med. 2000;28:1708–1716. doi: 10.1016/S0891-5849(00)00228-8. PubMed DOI
Thornalley P.J. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems - role in ageing and disease. Drug Metabol. Drug Interact. 2008;23:125–150. doi: 10.1515/DMDI.2008.23.1-2.125. PubMed DOI PMC
Hovatta I., Tennant R.S., Helton R., Marr R.A., Singer O., Redwine J.M., Ellison J.A., Schadt E.E., Verma I.M., Lockhart D.J., et al. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature. 2005;438:662–666. doi: 10.1038/nature04250. PubMed DOI
Benton C.S., Miller B.H., Skwerer S., Suzuki O., Schultz L.E., Cameron M.D., Marron J.S., Pletcher M.T., Wiltshire T. Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains. Psychopharmacology. 2012;221:297–315. doi: 10.1007/s00213-011-2574-z. PubMed DOI PMC
Allaman I., Bélanger M., Magistretti P.J. Methylglyoxal, the dark side of glycolysis. Front. Neurosci. 2015;9:23. doi: 10.3389/fnins.2015.00023. PubMed DOI PMC
Semchyshyn H.M. Reactive carbonyl species in vivo: Generation and dual biological effects. Sci. World J. 2014;2014 doi: 10.1155/2014/417842. PubMed DOI PMC
Fu T.-M., Jacob D.J., Wittrock F., Burrows J.P., Vrekoussis M., Henze D.K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008;113 doi: 10.1029/2007JD009505. DOI
Vogel M., Büldt A., Karst U. Hydrazine reagents as derivatizing agents in environmental analysis—A critical review. Fresenius J. Anal. Chem. 2000;366:781–791. doi: 10.1007/s002160051572. PubMed DOI
Chalmers R.A., Watts R.W.E. Derivatives for the identification and quantitative determination of some keto- and aldo-carboxylic acids by gas-liquid chromatography. Analyst. 1972;97:951–957. doi: 10.1039/an9729700951. PubMed DOI
Kobayashi K., Tanaka M., Kawai S. Gas chromatographic determination of low-molecular-weight carbonyl compounds in aqueous solution as their O-(2,3,4,5,6-pentafluorobenzyl) oximes. J. Chromatogr. A. 1980;187:413–417. doi: 10.1016/S0021-9673(00)80474-4. DOI
McLellan A.C., Phillips S.A., Thornalley P.J. The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Anal. Biochem. 1992;206:17–23. doi: 10.1016/S0003-2697(05)80005-3. PubMed DOI
Rotondo A., Bruno G., Brancatelli G., Nicolò F., Armentano D. A phenyl-salicyliden-imine as a suitable ligand to build functional materials. Inorganica Chim. Acta. 2009;362:247–252. doi: 10.1016/j.ica.2008.01.040. DOI
Pal R., Kim K.-H. Experimental choices for the determination of carbonyl compounds in air. J. Sep. Sci. 2007;30:2708–2718. doi: 10.1002/jssc.200700206. PubMed DOI
Brady O.L., Elsmie G.V. The use of 2,4-dinitrophenylhydrazine as a reagent for aldehydes and ketones. Analyst. 1926;51:77–78. doi: 10.1039/an9265100077. DOI
Fischer E. Über einige Osazone und Hydrazone der Zuckergruppe. Ber. Dtsch. Chem. Ges. 1894;27:2486–2492. doi: 10.1002/cber.189402702249. DOI
Oppermann H., Ding Y., Sharma J., Berndt Paetz M., Meixensberger J., Gaunitz F., Birkemeyer C. Metabolic response of glioblastoma cells associated with glucose withdrawal and pyruvate substitution as revealed by GC-MS. Nutr. Metab. 2016;13 doi: 10.1186/s12986-016-0131-9. PubMed DOI PMC
Bilova T., Lukasheva E., Brauch D., Greifenhagen U., Paudel G., Tarakhovskaya E., Frolova N., Mittasch J., Balcke G.U., Tissier A., et al. A snapshot of the plant glycated proteome-structural, functional, and mechanistic aspects. J. Biol. Chem. 2016;291:7621–7636. doi: 10.1074/jbc.M115.678581. PubMed DOI PMC
Eggink M., Wijtmans M., Ekkebus R., Lingeman H., de Esch I.J.P., Kool J., Niessen W.M.A., Irth H. Development of a selective ESI-MS derivatization reagent: Synthesis and optimization for the analysis of aldehydes in biological mixtures. Anal. Chem. 2008;80:9042–9051. doi: 10.1021/ac801429w. PubMed DOI
Milkovska-Stamenova S., Schmidt R., Frolov A., Birkemeyer C. GC-MS Method for the Quantitation of Carbohydrate Intermediates in Glycation Systems. J. Agric. Food Chem. 2015;63:5911–5919. doi: 10.1021/jf505757m. PubMed DOI
Ojeda A.G., Wrobel K., Escobosa A.R.C., Garay-Sevilla M.E., Wrobel K. High-performance liquid chromatography determination of glyoxal. methylglyoxal, and diacetyl in urine using 4-methoxy-o-phenylenediamine as derivatizing reagent. Anal. Biochem. 2014;449:52–58. doi: 10.1016/j.ab.2013.12.014. PubMed DOI
Thornalley P.J., Yurek-George A., Argirov O.K. Kinetics and mechanism of the reaction of aminoguanidine with the α-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions. Biochem. Pharmacol. 2000;60:55–65. doi: 10.1016/S0006-2952(00)00287-2. PubMed DOI
Kiontke A., Oliveira-Birkmeier A., Opitz A., Birkemeyer C. Electrospray ionization efficiency is dependent on different molecular descriptors with respect to solvent pH and instrumental configuration. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0167502. PubMed DOI PMC
Hoyen H., Vogel M., Karst U. Recent developments in the determination of formaldehyde in air samples using derivatizing agents. Air Qual. Control. 2003;63:295–298.
Zwiener C., Glauner T., Frimmel F.H. Method optimization for the determination of carbonyl compounds in disinfected water by DNPH derivatization and LC-ESI-MS-MS. Anal. Bioanal. Chem. 2002;372:615–621. doi: 10.1007/s00216-002-1233-y. PubMed DOI
Nemet I., Varga-Defterdarović L., Turk Z. Preparation and quantification of methylglyoxal in human plasma using reverse-phase high-performance liquid chromatography. Clin. Biochem. 2004;37:875–881. doi: 10.1016/j.clinbiochem.2004.05.024. PubMed DOI
Milic I., Hoffmann R., Fedorova M. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry. Anal. Chem. 2013;85:156–162. doi: 10.1021/ac302356z. PubMed DOI
Star-Weinstock M., Williamson B.L., Dey S., Pillai S., Purkayastha S. LC-ESI-MS/MS analysis of testosterone at sub-picogram levels using a novel derivatization reagent. Anal. Chem. 2012;84:9310–9317. doi: 10.1021/ac302036r. PubMed DOI
ChemAxon’s Solubility Predictor. [(accessed on 7 May 2018)]; Available online: https://docs.chemaxon.com/display/docs/Solubility+Predictor.
Abburi R., Kalkhof S., Oehme R., Kiontke A., Birkemeyer C. Artifacts in amine analysis from anodic oxidation of organic solvents upon electrospray ionization for mass spectrometry. Eur. J. Mass Spectrom. 2012;18:301–312. doi: 10.1255/ejms.1187. PubMed DOI
Hardie R.L., Thomson R.H. 488. The oxidation of phenylhydrazine. J. Chem. Soc. 1957;0:2512–2518. doi: 10.1039/jr9570002512. DOI
Huang P.-K.C., Kosower E.M. Diazenes. III. Properties of phenyldiazene. J. Am. Chem. Soc. 1968;90:2367–2376. doi: 10.1021/ja01011a029. DOI
Henning C., Liehr K., Girndt M., Ulrich C., Glomb M.A. Extending the spectrum of α-dicarbonyl compounds in vivo. J. Biol. Chem. 2014;289:28676–28688. doi: 10.1074/jbc.M114.563593. PubMed DOI PMC
Enders E., Kolbah D., Korunčev D., Müller E. Methoden der Organischen Chemie. 4th ed. Thieme; Stuttgart, Germany: 1967. Hydrazines, Azines; Azo-, Azoxy-Compounds I; Diazenes I.
Milic I., Fedorova M. Derivatization and detection of small aliphatic and lipid-bound carbonylated lipid peroxidation products by ESI-MS. Methods Mol. Biol. 2015;1208:3–20. doi: 10.1007/978-1-4939-1441-8_1. PubMed DOI
Nemet I., Varga-Defterdarović L., Turk Z. Methylglyoxal in food and living organisms. Mol. Nutr. Food Res. 2006;50:1105–1117. doi: 10.1002/mnfr.200600065. PubMed DOI
Rodríguez-Cáceres M.I., Palomino-Vasco M., Mora-Diez N., Acedo-Valenzuela M.I. Novel HPLC—fluorescence methodology for the determination of methylglyoxal and glyoxal. Application to the analysis of monovarietal wines “Ribera del Guadiana”. Food Chem. 2015;187:159–165. doi: 10.1016/j.foodchem.2015.04.103. PubMed DOI
Hamberg M. Autoxidation of linoleic acid: Isolation and structure of four dihydroxyoctadecadienoic acids. Biochim. Biophys. Acta Lipids Lipid Metab. 1983;752:353–356. doi: 10.1016/0005-2760(83)90134-0. DOI
Banni S., Contini M.S., Angioni E., Deiana M., Dessì M.A., Melis M.P., Carta G., Corongiu F.P. A novel approach to study linoleic acid autoxidation: Importance of simultaneous detection of the substrate and its derivative oxidation products. Free Radic. Res. 1996;25:43–53. doi: 10.3109/10715769609145655. PubMed DOI
Wang Y., Cui P. Reactive carbonyl species derived from Omega-3 and Omega-6 fatty acids. J. Agric. Food Chem. 2015;63:6293–6296. doi: 10.1021/acs.jafc.5b02376. PubMed DOI
Shibamoto T. Analytical methods for trace levels of reactive carbonyl compounds formed in lipid peroxidation systems. J. Pharmaceut. Biomed. Anal. 2006;41:12–25. doi: 10.1016/j.jpba.2006.01.047. PubMed DOI
Qi B.-L., Liu P., Wang Q.-Y., Cai W.-J., Yuan B.-F., Feng Y.-Q. Derivatization for liquid chromatography-mass spectrometry. Trends Anal. Chem. TrAC. 2014;59:121–132. doi: 10.1016/j.trac.2014.03.013. DOI
El-Maghrabey M.H., Kishikawa N., Ohyama K., Imazato T., Ueki Y., Kuroda N. Determination of human serum semicarbazide-sensitive amine oxidase activity via flow injection analysis with fluorescence detection after online derivatization of the enzymatically produced benzaldehyde with 1,2-diaminoanthraquinone. Anal. Chim. Acta. 2015;881:139–147. doi: 10.1016/j.aca.2015.04.006. PubMed DOI
Grosjean D., Fung K. Collection efficiencies of cartridges and microimpingers for sampling of aldehydes in air as 2,4-dinitrophenylhydrazones. Anal. Chem. 2002;54:1221–1224. doi: 10.1021/ac00244a054. DOI