Specialisation events of fungal metacommunities exposed to a persistent organic pollutant are suggestive of augmented pathogenic potential

. 2018 Nov 22 ; 6 (1) : 208. [epub] 20181122

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30466483

Grantová podpora
647928 European Research Council - International

Odkazy

PubMed 30466483
PubMed Central PMC6251201
DOI 10.1186/s40168-018-0589-y
PII: 10.1186/s40168-018-0589-y
Knihovny.cz E-zdroje

BACKGROUND: The impacts of man-made chemicals, in particular of persistent organic pollutants, are multifactorial as they may affect the integrity of ecosystems, alter biodiversity and have undesirable effects on many organisms. We have previously demonstrated that the belowground mycobiota of forest soils acts as a buffer against the biocide pollutant pentachlorophenol. However, the trade-offs made by mycobiota to mitigate this pollutant remain cryptic. RESULTS: Herein, we demonstrate using a culture-dependent approach that exposure to pentachlorophenol led to alterations in the composition and functioning of the metacommunity, many of which were not fully alleviated when most of the biocide was degraded. Proteomic and physiological analyses showed that the carbon and nitrogen metabolisms were particularly affected. This dysregulation is possibly linked to the higher pathogenic potential of the metacommunity following exposure to the biocide, supported by the secretion of proteins related to pathogenicity and reduced susceptibility to a fungicide. Our findings provide additional evidence for the silent risks of environmental pollution, particularly as it may favour the development of pathogenic trade-offs in fungi, which may impose serious threats to animals and plant hosts.

Zobrazit více v PubMed

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486:59–67. doi: 10.1038/nature11148. PubMed DOI

Backhaus T, Snape J, Lazorchak J. The impact of chemical pollution on biodiversity and ecosystem services: the need for an improved understanding. Integr Environ Assess Manag. 2012;8:575–576. doi: 10.1002/ieam.1353. PubMed DOI

Naeem S, Duffy JE, Zavaleta E. The functions of biological diversity in an age of extinction. Science. 2012;336:1401–1406. doi: 10.1126/science.1215855. PubMed DOI

Varela A, Martins C, Silva Pereira C. A three-act play: pentachlorophenol threats to the cork oak forest soils mycobiome. Curr Opin Microbiol. 2017;37:142–149. doi: 10.1016/j.mib.2017.06.007. PubMed DOI

Czaplicka M. Sources and transformations of chlorophenols in the natural environment. Sci Total Environ. 2004;322:21–39. doi: 10.1016/j.scitotenv.2003.09.015. PubMed DOI

Morgan M, Jones P, Sobus J. Short-term variability and predictors of urinary pentachlorophenol levels in Ohio preschool children. Int J Environ Res Public Health. 2015;12:800–815. doi: 10.3390/ijerph120100800. PubMed DOI PMC

Varela A, Martins C, Núñez O, Martins I, Houbraken JA, Martins TM, Leitão MC, McLellan I, Vetter W, Galceran MT, Silva Pereira C. Understanding fungal functional biodiversity during the mitigation of environmentally dispersed pentachlorophenol in cork oak forest soils. Environ Microbiol. 2015;17:2922–2934. doi: 10.1111/1462-2920.12837. PubMed DOI

Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011;9:177–192. doi: 10.1038/nrmicro2519. PubMed DOI

Carvalho MB, Martins I, Medeiros J, Tavares S, Planchon S, Renaut J, Nunez O, Gallart-Ayala H, Galceran MT, Hursthouse A, Silva Pereira C. The response of Mucor plumbeus to pentachlorophenol: a toxicoproteomics study. J Proteome. 2013;78:159–171. doi: 10.1016/j.jprot.2012.11.006. PubMed DOI

Carvalho MB, Tavares S, Medeiros J, Núñez O, Gallart-Ayalla H, Leitão MC, Galceran MT, Hursthouse A, Silva Pereira C. Degradation pathway of pentachlorophenol by Mucor plumbeus involves phase II conjugation and oxidation-reduction reactions. J Hazard Mater. 2011;198:133–142. doi: 10.1016/j.jhazmat.2011.10.021. PubMed DOI

Gadd GM. Fungi in bioremediation: Cambridge University Press; 2001.

Martins TM, Nunez O, Gallart-Ayala H, Leitao MC, Galceran MT, Silva Pereira C. New branches in the degradation pathway of monochlorocatechols by Aspergillus nidulans: a metabolomics analysis. J Hazard Mater. 2014;268:264–272. doi: 10.1016/j.jhazmat.2014.01.024. PubMed DOI

Větrovský Tomáš, Baldrian Petr, Morais Daniel. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34(13):2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Žifčáková L, Větrovský T, Howe A, Baldrian P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol. 2016;18:288–301. doi: 10.1111/1462-2920.13026. PubMed DOI

Morel G, Sterck L, Swennen D, Marcet-Houben M, Onesime D, Levasseur A, Jacques N, Mallet S, Couloux A, Labadie K, et al. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Sci Rep. 2015;5:11571. doi: 10.1038/srep11571. PubMed DOI PMC

Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol. 2011;9:803. doi: 10.1038/nrmicro2652. PubMed DOI

Medina-Silva R, Barros MP, Galhardo RS, Netto LE, Colepicolo P, Menck CF. Heat stress promotes mitochondrial instability and oxidative responses in yeast deficient in thiazole biosynthesis. Res Microbiol. 2006;157:275–281. doi: 10.1016/j.resmic.2005.07.004. PubMed DOI

Limjindaporn T, Khalaf RA, Fonzi WA. Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol. 2003;50:993–1004. doi: 10.1046/j.1365-2958.2003.03747.x. PubMed DOI

Bolton MD, Thomma BP. The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi. Physiol Mol Plant Pathol. 2008;72:104–110. doi: 10.1016/j.pmpp.2008.07.001. DOI

Seidler NW. In GAPDH: Biological Properties and Diversity Springer. 2013. GAPDH, as a virulence factor; pp. 149–178. PubMed

Dubovenko AG, Dunaevsky YE, Belozersky MA, Oppert B, Lord JC, Elpidina EN. Trypsin-like proteins of the fungi as possible markers of pathogenicity. Fungal Biol. 2010;114:151–159. doi: 10.1016/j.funbio.2009.11.004. PubMed DOI

Mir AA, Park S-Y, Sadat MA, Kim S, Choi J, Jeon J, Lee Y-H. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae. Sci Rep. 2015;5:11831. doi: 10.1038/srep11831. PubMed DOI PMC

Selvam RM, Nithya R, Devi PN, Shree RSB, Nila MV, Demonte NL, Thangavel C, Maheshwari JJ, Lalitha P, Prajna NV, Dharmalingam K. Exoproteome of Aspergillus flavus corneal isolates and saprophytes: identification of proteoforms of an oversecreted alkaline protease. J Proteome. 2015;115:23–35. doi: 10.1016/j.jprot.2014.11.017. PubMed DOI

Huang Z, Hao Y, Gao T, Huang Y, Ren S, Keyhani NO. The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea. Appl Microbiol Biotechnol. 2016;100:5491–5503. doi: 10.1007/s00253-016-7308-z. PubMed DOI

Garfoot AL, Dearing KL, VanSchoiack AD, Wysocki VH, Rappleye CA. Eng1 and Exg8 are the major β-glucanases secreted by the fungal pathogen Histoplasma capsulatum. J Biol Chem. 2017;292:4801–4810. doi: 10.1074/jbc.M116.762104. PubMed DOI PMC

Davis DA. How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol. 2009;12:365–370. doi: 10.1016/j.mib.2009.05.006. PubMed DOI

Fairlamb AH, Gow NA, Matthews KR, Waters AP. Drug resistance in eukaryotic microorganisms. Nat Microbiol. 2016;1:16092. doi: 10.1038/nmicrobiol.2016.92. PubMed DOI PMC

Denning DW, Bromley MJ. How to bolster the antifungal pipeline. Science. 2015;347:1414–1416. doi: 10.1126/science.aaa6097. PubMed DOI

Low-Décarie E, Kolber M, Homme P, Lofano A, Dumbrell A, Gonzalez A, Bell G. Community rescue in experimental metacommunities. Proc Natl Acad Sci U S A. 2015;112:14307–14312. doi: 10.1073/pnas.1513125112. PubMed DOI PMC

Martins I, Garcia H, Varela A, Núñez O, Planchon S, Galceran MT, Renaut J, Rebelo LP, Silva Pereira C. Investigating Aspergillus nidulans secretome during colonisation of cork cell walls. J Proteome. 2014;98:175–188. doi: 10.1016/j.jprot.2013.11.023. PubMed DOI

Liu B, Tu C, Hu S, Gumpertz M, Ristaino JB. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of southern blight. Appl Soil Ecol. 2007;37:202–214. doi: 10.1016/j.apsoil.2007.06.007. DOI

Preston-Mafham J, Boddy L, Randerson PF. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles–a critique. FEMS Microbiol Ecol. 2002;42:1–14. PubMed

Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC. DNA stable-isotope probing. Nat Protoc. 2007;2:860. doi: 10.1038/nprot.2007.109. PubMed DOI

Ihrmark K, Bödeker I, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–677. doi: 10.1111/j.1574-6941.2012.01437.x. PubMed DOI

Aronesty Erik. Comparison of Sequencing Utility Programs. The Open Bioinformatics Journal. 2013;7(1):1–8. doi: 10.2174/1875036201307010001. DOI

Nilsson RH, Veldre V, Hartmann M, Unterseher M, Amend A, Bergsten J, Kristiansson E, Ryberg M, Jumpponen A, Abarenkov K. An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol. 2010;3:284–287. doi: 10.1016/j.funeco.2010.05.002. DOI

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996. doi: 10.1038/nmeth.2604. PubMed DOI

Méchin V, Damerval C, Zivy M. Total protein extraction with TCA-acetone. In: Thiellement H, Zivy M, Damerval C, Méchin V, editors. Plant proteomics. Totowa: Springer; 2007. p. 1–8. PubMed

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP. Statistical analysis of membrane proteome expression changes in Saccharomyces c erevisiae. J Proteome Res. 2006;5:2339–2347. doi: 10.1021/pr060161n. PubMed DOI

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Kammers K, Cole RN, Tiengwe C, Ruczinski I. Detecting significant changes in protein abundance. EuPA Open Proteomics. 2015;7:11–19. doi: 10.1016/j.euprot.2015.02.002. PubMed DOI PMC

Gatto L, Breckels LM, Naake T, Gibb S. Visualization of proteomics data using R and bioconductor. Proteomics. 2015;15:1375–1389. doi: 10.1002/pmic.201400392. PubMed DOI PMC

Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2015;44:D447–D456. doi: 10.1093/nar/gkv1145. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...