PERPETUAL FLOWERING2 coordinates the vernalization response and perennial flowering in Arabis alpina
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30481340
PubMed Central
PMC6363098
DOI
10.1093/jxb/ery423
PII: 5210421
Knihovny.cz E-zdroje
- MeSH
- Arabis genetika růst a vývoj metabolismus MeSH
- květy genetika růst a vývoj MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stonky rostlin genetika růst a vývoj MeSH
- transkripční faktory genetika metabolismus MeSH
- transkriptom * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
- transkripční faktory MeSH
The floral repressor APETALA2 (AP2) in Arabidopsis regulates flowering through the age pathway. The AP2 ortholog in the alpine perennial Arabis alpina, PERPETUAL FLOWERING 2 (PEP2), was previously reported to control flowering through the vernalization pathway via enhancing the expression of another floral repressor PERPETUAL FLOWERING 1 (PEP1), the ortholog of Arabidopsis FLOWERING LOCUS C (FLC). However, PEP2 also regulates flowering independently of PEP1. To characterize the function of PEP2, we analyzed the transcriptomes of pep2 and pep1 mutants. The majority of differentially expressed genes were detected between pep2 and the wild type or between pep2 and pep1, highlighting the importance of the PEP2 role that is independent of PEP1. Here, we demonstrate that PEP2 activity prevents the up-regulation of the A. alpina floral meristem identity genes FRUITFUL (AaFUL), LEAFY (AaLFY), and APETALA1 (AaAP1), ensuring floral commitment during vernalization. Young pep2 seedlings respond to vernalization, suggesting that PEP2 regulates the age-dependent response to vernalization independently of PEP1. The major role of PEP2 through the PEP1-dependent pathway takes place after vernalization, when it facilitates PEP1 activation both in the main shoot apex and in axillary branches. These multiple roles of PEP2 in the vernalization response contribute to the A. alpina life cycle.
Botanical Institute Cologne Biocenter University of Cologne Cologne Germany
Max Planck Institute for Plant Breeding Research Carl von Linné Weg Cologne Germany
Zobrazit více v PubMed
Amasino R. 2009. Floral induction and monocarpic versus polycarpic life histories. Genome Biology 10, 228. PubMed PMC
Angel A, Song J, Dean C, Howard M. 2011. A Polycomb-based switch underlying quantitative epigenetic memory. Nature 476, 105–108. PubMed
Aukerman MJ, Sakai H. 2003. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. The Plant Cell 15, 2730–2741. PubMed PMC
Balanzà V, Martínez-Fernández I, Ferrándiz C. 2014. Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. Journal of Experimental Botany 65, 1193–1203. PubMed PMC
Balanzà V, Martínez-Fernández I, Sato S, Yanofsky MF, Kaufmann K, Angenent GC, Bemer M, Ferrándiz C. 2018. Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL–APETALA2 pathway. Nature Communications 9, 565. PubMed PMC
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate—a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B: Methodological 57, 289–300.
Bergonzi S, Albani MC. 2011. Reproductive competence from an annual and a perennial perspective. Journal of Experimental Botany 62, 4415–4422. PubMed
Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordström KJ, Wang R, Schneeberger K, Moerland PD, Coupland G. 2013. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340, 1094–1097. PubMed
Billings WD, Mooney HA. 1968. Ecology of Arctic and Alpine plants. Biological Reviews of the Cambridge Philosophical Society 43, 481–529.
Bowman JL, Smyth DR, Meyerowitz EM. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20. PubMed
Castro PH, Couto D, Freitas S, et al. . 2016. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Molecular Biology 92, 143–159. PubMed
Chen X. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025. PubMed PMC
Cline MS, Smoot M, Cerami E, et al. . 2007. Integration of biological networks and gene expression data using Cytoscape. Nature Protocols 2, 2366–2382. PubMed PMC
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735–743. PubMed
Conti L, Price G, O’Donnell E, Schwessinger B, Dominy P, Sadanandom A. 2008. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis. The Plant Cell 20, 2894–2908. PubMed PMC
Coustham V, Li P, Strange A, Lister C, Song J, Dean C. 2012. Quantitative modulation of polycomb silencing underlies natural variation in vernalization. Science 337, 584–587. PubMed
Crevillén P, Sonmez C, Wu Z, Dean C. 2013. A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO Journal 32, 140–148. PubMed PMC
Crevillén P, Yang H, Cui X, Greeff C, Trick M, Qiu Q, Cao X, Dean C. 2014. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515, 587–590. PubMed PMC
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139, 5–17. PubMed PMC
Deng WW, Ying H, Helliwell CA, Taylor JM, Peacock WJ, Dennis ES. 2011. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proceedings of the National Academy of Sciences, USA 108, 6680–6685. PubMed PMC
Diggle P. 1997. Extreme preformation in alpine Polygonum viviparum: an architectural and developmental analysis. American Journal of Botany 84, 154. PubMed
Guo D, Wong WS, Xu WZ, Sun FF, Qing DJ, Li N. 2011. Cis-cinnamic acid-enhanced 1 gene plays a role in regulation of Arabidopsis bolting. Plant Molecular Biology 75, 481–495. PubMed
Hyun Y, Richter R, Vincent C, Martinez-Gallegos R, Porri A, Coupland G. 2016. Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Developmental Cell 37, 254–266. PubMed
Keith RA, Mitchell-Olds T. 2017. Testing the optimal defense hypothesis in nature: variation for glucosinolate profiles within plants. PLoS One 12, e0180971. PubMed PMC
Klock HE, Koesema EJ, Knuth MW, Lesley SA. 2008. Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins 71, 982–994. PubMed
Koskela EA, Mouhu K, Albani MC, Kurokura T, Rantanen M, Sargent DJ, Battey NH, Coupland G, Elomaa P, Hytönen T. 2012. Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca.Plant Physiology 159, 1043–1054. PubMed PMC
Kotoda N, Iwanami H, Takahashi S, Abe K. 2006. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. Journal of the American Society for Horticultural Science 131, 74–81.
Krogan NT, Hogan K, Long JA. 2012. APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 139, 4180–4190. PubMed PMC
Lazaro A, Obeng-Hinneh E, Albani MC. 2018. Extended vernalization regulates inflorescence fate in Arabis alpina by stably silencing PERPETUAL FLOWERING1. Plant Physiology 176, 2819–2833. PubMed PMC
Lee I, Amasino RM. 1995. Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiology 108, 157–162. PubMed PMC
Maere S, Heymans K, Kuiper M. 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448–3449. PubMed
Mateos JL, Tilmes V, Madrigal P, Severing E, Richter R, Rijkenberg CWM, Krajewski P, Coupland G. 2017. Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species. Proceedings of the National Academy of Sciences, USA 114, E11037–E11046. PubMed PMC
Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M. 2009. Repression of flowering by the miR172 target SMZ. PLoS Biology 7, e1000148. PubMed PMC
Meloche CG, Diggle PK. 2001. Preformation, architectural complexity, and developmental flexibility in Acomastylis rossii (Rosaceae). American Journal of Botany 88, 980–991. PubMed
Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11, 949–956. PubMed PMC
Mohamed R, Wang CT, Ma C, et al. . 2010. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. The Plant Journal 62, 674–688. PubMed
Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle MR, Amasino RM, Noh YS. 2004. Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. The Plant Cell 16, 2601–2613. PubMed PMC
Nordström KJ, Albani MC, James GV, Gutjahr C, Hartwig B, Turck F, Paszkowski U, Coupland G, Schneeberger K. 2013. Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nature Biotechnology 31, 325–330. PubMed
Park JY, Kim H, Lee I. 2017. Comparative analysis of molecular and physiological traits between perennial Arabis alpina Pajares and annual Arabidopsis thaliana Sy-0. Scientific Reports 7, 13348. PubMed PMC
Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU. 2003. Dissection of floral induction pathways using global expression analysis. Development 130, 6001–6012. PubMed
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. 2005. Specific effects of microRNAs on the plant transcriptome. Developmental Cell 8, 517–527. PubMed
Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development 20, 898–912. PubMed PMC
Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES. 2000. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences, USA 97, 3753–3758. PubMed PMC
Shindo C, Lister C, Crevillen P, Nordborg M, Dean C. 2006. Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes & Development 20, 3079–3083. PubMed PMC
Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111. PubMed PMC
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28, 511–515. PubMed PMC
Wang R, Albani MC, Vincent C, Bergonzi S, Luan M, Bai Y, Kiefer C, Castillo R, Coupland G. 2011. Aa TFL1 confers an age-dependent response to vernalization in perennial Arabis alpina. The Plant Cell 23, 1307–1321. PubMed PMC
Wang R, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, Alonso-Blanco C, Coupland G, Albani MC. 2009. PEP1 regulates perennial flowering in Arabis alpina. Nature 459, 423–427. PubMed
Willing EM, Rawat V, Maumus F, et al. . 2015. Lack of symmetric CG methylation and long-lasting retrotransposon activity have shaped the genome of Arabis alpina. Nature Plants 1, 14023. PubMed
Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750–759. PubMed PMC
Wu G, Poethig RS. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539–3547. PubMed PMC
Xu M, Hu T, Zhao J, Park MY, Earley KW, Wu G, Yang L, Poethig RS. 2016. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genetics 12, e1006263. PubMed PMC
Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M. 2010. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. The Plant Cell 22, 2156–2170. PubMed PMC
Yun H, Hyun Y, Kang MJ, Noh YS, Noh B, Choi Y. 2011. Identification of regulators required for the reactivation of FLOWERING LOCUS C during Arabidopsis reproduction. Planta 234, 1237–1250. PubMed