Settled iron-based road dust and its characteristics and possible association with detection in human tissues

. 2019 Jan ; 26 (3) : 2950-2959. [epub] 20181130

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30499095

Grantová podpora
LO1203 Regional Materials Science and Technology Centre - Feasibility Program
SP2018/81 Ministry of Education, Youth and Sports of the Czech Republic

Odkazy

PubMed 30499095
DOI 10.1007/s11356-018-3841-x
PII: 10.1007/s11356-018-3841-x
Knihovny.cz E-zdroje

Settled road dust was examined to detect the presence of non-airborne submicron and nano-sized iron-based particles and to characterize these particles. Samples were collected from a road surface near a busy road junction in the city of Ostrava, Czech Republic, once a month from March to October. The eight collected samples were subjected to a combination of experimental techniques including elemental analysis, Raman microspectroscopy, scanning electron microscopy (SEM) analysis, and magnetometry. The data thereby obtained confirmed the presence of non-agglomerated spherical nano-sized iron-based particles, with average sizes ranging from 2 down to 490 nm. There are several sources in road traffic which generate road dust particles, including exhaust and non-exhaust processes. Some of them (e.g., brake wear) produce iron as the dominant metallic element. Raman microspectroscopy revealed forms of iron (mainly as oxides, Fe2O3, and mixtures of Fe2O3 and Fe3O4). Moreover, Fe3O4 was also detected in samples of human tissues from the upper and lower respiratory tract. In view of the fact that no agglomeration of those particles was found by SEM, it is supposed that these particles may be easily resuspended and represent a risk to human health due to inhalation exposure, as proved by the detection of particles with similar morphology and phase composition in human tissues.

Zobrazit více v PubMed

Environ Int. 2001 Apr;26(4):257-63 PubMed

Proc Biol Sci. 2003 Aug 7;270 Suppl 1:S62-4 PubMed

Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7683-7 PubMed

Environ Int. 2004 Oct;30(8):1009-17 PubMed

J Alzheimers Dis. 2008 Feb;13(1):49-52 PubMed

Sci Total Environ. 2008 Aug 1;400(1-3):270-82 PubMed

Environ Sci Technol. 2008 Sep 1;42(17):6502-7 PubMed

Biochim Biophys Acta. 2009 Jul;1790(7):731-9 PubMed

Inhal Toxicol. 2010 Apr;22(5):402-16 PubMed

Environ Pollut. 2011 Apr;159(4):998-1006 PubMed

Sci Total Environ. 2011 May 15;409(12):2366-72 PubMed

Chemosphere. 2012 Apr;87(2):163-70 PubMed

Virulence. 2013 Nov 15;4(8):847-58 PubMed

J Hazard Mater. 2014 Jun 30;275:31-6 PubMed

Sci Total Environ. 2015 Feb 1;505:367-75 PubMed

Curr Protoc Toxicol. 2015 Feb 02;63:24.4.1-23 PubMed

Biomed Res Int. 2015;2015:505986 PubMed

Multidiscip Respir Med. 2015 Dec 01;10:34 PubMed

Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10797-801 PubMed

Int J Environ Res Public Health. 2017 Jun 29;14(7): PubMed

J Nanosci Nanotechnol. 2019 May 1;19(5):2869-2875 PubMed

Int Arch Arbeitsmed. 1973 May 23;31(2):163-70 PubMed

Am J Respir Crit Care Med. 1996 Jan;153(1):3-50 PubMed

Biochim Biophys Acta. 1999 Jan 4;1426(1):212-6 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...