Oxidative stress in the oral cavity is driven by individual-specific bacterial communities
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
30510769
PubMed Central
PMC6258756
DOI
10.1038/s41522-018-0072-3
PII: 72
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The term "bacterial dysbiosis" is being used quite extensively in metagenomic studies, however, the identification of harmful bacteria often fails due to large overlap between the bacterial species found in healthy volunteers and patients. We hypothesized that the pathogenic oral bacteria are individual-specific and they correlate with oxidative stress markers in saliva which reflect the inflammatory processes in the oral cavity. Temporally direct and lagged correlations between the markers and bacterial taxa were computed individually for 26 volunteers who provided saliva samples during one month (21.2 ± 2.7 samples/volunteer, 551 samples in total). The volunteers' microbiomes differed significantly by their composition and also by their degree of microbiome temporal variability and oxidative stress markers fluctuation. The results showed that each of the marker-taxa pairs can have negative correlations in some volunteers while positive in others. Streptococcus mutans, which used to be associated with caries before the metagenomics era, had the most prominent correlations with the oxidative stress markers, however, these correlations were not confirmed in all volunteers. The importance of longitudinal samples collections in correlation studies was underlined by simulation of single sample collections in 1000 different combinations which produced contradictory results. In conclusion, the distinct intra-individual correlation patterns suggest that different bacterial consortia might be involved in the oxidative stress induction in each human subject. In the future, decreasing cost of DNA sequencing will allow to analyze multiple samples from each patient, which might help to explore potential diagnostic applications and understand pathogenesis of microbiome-associated oral diseases.
Australian Centre for Ecogenomics The University of Queensland St Lucia QLD Australia
CIBER in Epidemiology and Public Health Madrid Spain
Institute for Integrative Systems Biology UVEG Valencia Spain
Institute of Molecular Biomedicine Faculty of Medicine Comenius University Bratislava Slovakia
Institute of Physiology Academy of Sciences of the Czech Republic Praha Czech Republic
Institute of Physiology Faculty of Medicine Comenius University Bratislava Slovakia
School of Dentistry The University of Queensland Herston QLD Australia
See more in PubMed
Simón-Soro A, Guillen-Navarro M, Mira A. Metatranscriptomics reveals overall active bacterial composition in caries lesions. J. Oral Microbiol. 2014;6:25443. doi: 10.3402/jom.v6.25443. PubMed DOI PMC
Belda-Ferre P, et al. The oral metagenome in health and disease. ISME J. 2011;6:46–56. doi: 10.1038/ismej.2011.85. PubMed DOI PMC
Rôças IN, Siqueira JF. Characterization of microbiota of root canal-treated teeth with posttreatment disease. J. Clin. Microbiol. 2012;50:1721–1724. doi: 10.1128/JCM.00531-12. PubMed DOI PMC
Loeshe WJ. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 1986;50:353–380. PubMed PMC
Simón-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. 2015;23:76–82. doi: 10.1016/j.tim.2014.10.010. PubMed DOI
Curnutte JT, Whitten DM, Babior BM. Defective superoxide production by granulocytes from patients with chronic granulomatous disease. N. Engl. J. Med. 1974;290:593–597. doi: 10.1056/NEJM197403142901104. PubMed DOI
Nathan CF, Root RK. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J. Exp. Med. 1977;146:1648–1662. doi: 10.1084/jem.146.6.1648. PubMed DOI PMC
Klebanoff SJ. Oxygen metabolism and the toxic properties of phagocytes. Ann. Intern. Med. 1980;93:480–489. doi: 10.7326/0003-4819-93-3-480. PubMed DOI
Nathan CF, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013;13:349–361. doi: 10.1038/nri3423. PubMed DOI PMC
Behuliak M, et al. Variability of thiobarbituric acid reacting substances in saliva. Dis. Markers. 2009;26:49–53. doi: 10.1155/2009/175683. PubMed DOI PMC
Iannitti T, Rottigni V, Palmieri B. Role of free radicals and antioxidant defences in oral cavity- related pathologies. J. Oral Pathol. Med. 2012;41:649–661. doi: 10.1111/j.1600-0714.2012.01143.x. PubMed DOI
Espey MG. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic. Biol. Med. 2013;55:130–140. doi: 10.1016/j.freeradbiomed.2012.10.554. PubMed DOI
Lettrichová I, Tóthová L, Hodosy J, Behuliak M, Celec P. Variability of salivary markers of oxidative stress and antioxidant status in young healthy individuals. Redox Rep. 2015;1:24–30. PubMed PMC
Das D, Bishayi B. Contribution of catalase and superoxide dismutase to the intracellular survival of clinical isolates of Staphylococcus aureus in murine macrophages. Indian J. Microbiol. 2010;50:375–384. doi: 10.1007/s12088-011-0063-z. PubMed DOI PMC
Herman A, et al. The bacterial iprA gene is conserved across Enterobacteriaceae, is involved in oxidative stress resistance, and influences gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 2016;198:2166–2179. doi: 10.1128/JB.00144-16. PubMed DOI PMC
Wang S, et al. Transcriptomic response of Escherichia coli O157:H7 to oxidative stress. Appl. Environ. Microbiol. 2009;75:6110–6123. doi: 10.1128/AEM.00914-09. PubMed DOI PMC
Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J. Biol. Chem. 2008;283:21837–21841. doi: 10.1074/jbc.R700019200. PubMed DOI PMC
Tothova L, Kamodyova N, Cervenka T, Celec P. Salivary markers of oxidative stress in oral diseases. Front. Cell. Infect. Microbiol. 2015;5:73. doi: 10.3389/fcimb.2015.00073. PubMed DOI PMC
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;19:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC
Ialongo C. Preanalytic of total antioxidant capacity assays performed in serum, plasma, urine and saliva. Clin. Biochem. 2017;50:356–363. doi: 10.1016/j.clinbiochem.2016.11.037. PubMed DOI
Szemes T, et al. On the origin of reactive oxygen species and antioxidative mechanisms in Enterococcus faecalis. Redox Rep. 2010;15:202–206. doi: 10.1179/135100010X12826446921581. PubMed DOI PMC
Ahmadi-Motamayel F, Goodarzi MT, Hendi SS, Kasraei S, Moghimbeigi A. Total antioxidant capacity of saliva and dental caries. Med. Oral Patol. Oral Cir. Bucal. 2013;18:e553–e556. doi: 10.4317/medoral.18762. PubMed DOI PMC
Kumar SV, Kumar RH, Bagewadi N, Krishnan NA. A study to correlate dental caries experience with total antioxidant levels of saliva among adolescents in Mangalore. J. Indian Assoc. Public Health Dent. 2015;13:122–125. doi: 10.4103/2319-5932.159045. DOI
da Silva PV, Troiano JA, Cláudia A, Pessan JP, Antoniali C. Increased activity of the antioxidants systems modulate the oxidative stress in saliva of toddlers with early childhood caries. Arch. Oral Biol. 2016;70:62–66. doi: 10.1016/j.archoralbio.2016.06.003. PubMed DOI
Hodosy J, Celec P. Daytime of sampling, tooth-brushing and ascorbic acid influence salivary thiobarbituric acid reacting substances—a potential clinical marker of gingival status. Dis. Markers. 2005;21:203–207. doi: 10.1155/2005/209643. PubMed DOI PMC
Belstrøm D, et al. Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. PeerJ. 2016;4:e2433. doi: 10.7717/peerj.2433. PubMed DOI PMC
Kamodyova N, Minarik G, Hodosy J, Celec P. Single consumption of Bryndza cheese temporarily affects oral microbiota and salivary markers of oxidative stress. Curr. Microbiol. 2014;69:716–724. doi: 10.1007/s00284-014-0649-x. PubMed DOI
Belstrøm D, et al. Temporal stability of the salivary microbiota in oral health. PLoS One. 2016;11:e0147472. doi: 10.1371/journal.pone.0147472. PubMed DOI PMC
Marti JM, et al. Health and disease imprinted in the time variability of the human microbiome. mSystems. 2017;2:2. doi: 10.1128/mSystems.00144-16. PubMed DOI PMC
Baňasová L, et al. Salivary DNA and markers of oxidative stress in patients with chronic periodontitis. Clin. Oral Investig. 2015;19:201–207. doi: 10.1007/s00784-014-1236-z. PubMed DOI
Fisher C, Mehta P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS One. 2014;9:e102451. doi: 10.1371/journal.pone.0102451. PubMed DOI PMC
Bucci V, et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 2016;17:121. doi: 10.1186/s13059-016-0980-6. PubMed DOI PMC
Stein RR, et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 2013;9:e1003388. doi: 10.1371/journal.pcbi.1003388. PubMed DOI PMC
Yang F, et al. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J. 2011;6:1–10. doi: 10.1038/ismej.2011.71. PubMed DOI PMC
Gross EL, et al. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012;7:e47722. doi: 10.1371/journal.pone.0047722. PubMed DOI PMC
Peterson SN, Nesrud E, Schork NJ, Bretz WA. Dental caries pathogenicity: a genomic and metagenomic perspective. Int. Dent. J. 2011;61:11–22. doi: 10.1111/j.1875-595X.2011.00025.x. PubMed DOI PMC
Li Y, et al. Analysis of the microbiota of black stain in the primary dentition. PLoS One. 2015;10:0137030. PubMed PMC
Jagathrakshakan SNN, Sethumadhava RJJ, Mehta DTT, Ramanathan A. 16S rRNA gene-based metagenomic analysis identifies a novel bacterial co-prevalence pattern in dental caries. Eur. J. Dent. 2015;9:127–132. doi: 10.4103/1305-7456.149661. PubMed DOI PMC
Aas JA, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 2008;46:1407–1417. doi: 10.1128/JCM.01410-07. PubMed DOI PMC
Takeshita T, et al. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study. Sci. Rep. 2016;6:22164. doi: 10.1038/srep22164. PubMed DOI PMC
Tóthová L, Celecová V, Celec P. Salivary markers of oxidative stress and their relation to periodontal and dental status in children. Dis. Markers. 2013;34:9–15. doi: 10.1155/2013/591765. PubMed DOI PMC
Celecová V, Kamodyová N, Tóthová L, Kúdela M, Celec P. Salivary markers of oxidative stress are related to age and oral health in adult non-smokers. J. Oral Pathol. Med. 2013;41:263–266. doi: 10.1111/jop.12008. PubMed DOI
Vlková B, et al. Salivary markers of oxidative stress in patients with oral premalignant lesions. Arch. Oral Biol. 2012;57:1651–1656. doi: 10.1016/j.archoralbio.2012.09.003. PubMed DOI
Vlková B, Celec P. Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? Vivo. 2009;23:343–345. PubMed
Mardinoglu A, et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol. Syst. Biol. 2015;11:834. doi: 10.15252/msb.20156487. PubMed DOI PMC
Almerich-Silla JM, et al. Oxidative stress parameters in saliva and its association with periodontal disease and types of bacteria. Dis. Markers. 2015;2015:653537. doi: 10.1155/2015/653537. PubMed DOI PMC
Tóthová L, Ostatníková D, Šebeková K, Celec P, Hodosy J. Sex differences of oxidative stress markers in young healthy subjects are marker-specific in plasma but not in saliva. Ann. Hum. Biol. 2013;40:175–180. doi: 10.3109/03014460.2012.754495. PubMed DOI
Gonze D, Lahti L, Raes J, Faus K. Multi-stability and the origin of microbial community types. ISME. J. 2017;11:2159–2166. doi: 10.1038/ismej.2017.60. PubMed DOI PMC
Debelius J, et al. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 2016;17:217. doi: 10.1186/s13059-016-1086-x. PubMed DOI PMC
Gilbert JA, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016;535:94–103. doi: 10.1038/nature18850. PubMed DOI
Wang C, Li Z, Wu K. Preliminary study on the rules of Streptococcus mutans reactive oxygen species metabolism. Zhonghua. Kou. Qiang. Ke. Za. Zhi. 2001;36:202–205. PubMed
Fujishima K, et al. dpr and sod in Streptococcus mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2. Appl. Environ. Microbiol. 2013;79:1436–1443. doi: 10.1128/AEM.03306-12. PubMed DOI PMC
Winter SE, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467:426–429. doi: 10.1038/nature09415. PubMed DOI PMC
Naaber P, et al. Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. J. Med. Microbiol. 2004;53:551–554. doi: 10.1099/jmm.0.45595-0. PubMed DOI
Peris-Bondia F, Latorre A, Artacho A, Moya A, D’Auria G. The active human gut microbiota differs from the total microbiota. PLoS One. 2011;6:e22448. doi: 10.1371/journal.pone.0022448. PubMed DOI PMC
Maurice CF, Haiser HJJ, Turnbaugh PJJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152:39–50. doi: 10.1016/j.cell.2012.10.052. PubMed DOI PMC
Palm NW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–1010. doi: 10.1016/j.cell.2014.08.006. PubMed DOI PMC
Simón-Soro A, et al. Revealing microbial recognition by specific antibodies. BMC Microbiol. 2015;15:132. doi: 10.1186/s12866-015-0456-y. PubMed DOI PMC
D’Auria G, et al. Active and secreted IgA-coated bacterial fractions from the human gut reveal an under-represented microbiota core. Sci. Rep. 2013;3:3515. doi: 10.1038/srep03515. PubMed DOI PMC
Džunková M, et al. Active and secretory IgA-coated bacterial fractions elucidate dysbiosis in clostridium difficile infection. mSphere. 2016;1:e00101–e00116. doi: 10.1128/mSphere.00101-16. PubMed DOI PMC
Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016;24:402–413. doi: 10.1016/j.tim.2016.02.002. PubMed DOI
Rojo D, et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol. Rev. 2017;41:453–478. doi: 10.1093/femsre/fuw046. PubMed DOI PMC
Polgárová K, Behuliak M, Celec P. Effect of saliva processing on bacterial DNA extraction. New Microbiol. 2010;33:373–379. PubMed
Sakamoto M, et al. Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes. J. Med. Microbiol. 2004;53:563–571. doi: 10.1099/jmm.0.45576-0. PubMed DOI
Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. doi: 10.1093/nar/gks808. PubMed DOI PMC
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–864. doi: 10.1093/bioinformatics/btr026. PubMed DOI PMC
Aronesty, E. ea-utils: Command-line tools for processing biological sequencing data. Expression Analysis. https://code.google.com/p/ea-utils/ (2011).
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI
Wooley JC, Godzik A, Friedberg I. A primer on metagenomics. PLoS Comput. Biol. 2010;6:e1000667. doi: 10.1371/journal.pcbi.1000667. PubMed DOI PMC
Camelo-Castillo A, Benítez-Páez A, Belda-Ferre P, Cabrera-Rubio R, Mira A. Streptococcus dentisani sp. nov., a novel member of the mitis group. Int. J. Syst. Evol. Microbiol. 2014;64:60–65. doi: 10.1099/ijs.0.054098-0. PubMed DOI
Cole JR, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37:D141–D145. doi: 10.1093/nar/gkn879. PubMed DOI PMC
Oksanen, J., et al. Vegan: Community Ecology Package. R package version 2.3-2. (2015).
Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI
Chen W, Zhang CK, Cheng Y, Zhang S, Zhao H. A comparison of methods for clustering 16S rRNA sequences into OTUs. PLoS One. 2013;8:e70837. doi: 10.1371/journal.pone.0070837. PubMed DOI PMC
Witko-Sarsat V, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–1313. doi: 10.1038/ki.1996.186. PubMed DOI
Münch G, et al. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur. J. Clin. Chem. Clin. Biochem. 1997;35:669–677. PubMed
Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004;37:277–285. doi: 10.1016/j.clinbiochem.2003.11.015. PubMed DOI
Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI
Xia LC, et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 2011;5:S15. doi: 10.1186/1752-0509-5-S2-S15. PubMed DOI PMC
Wei, T. & Simko, V. corrplot: Visualization of a Correlation Matrix. R package version 0.77. (2016).
Eklund, A. beeswarm: The Bee Swarm Plot, an Alternative to Stripchart. R package version 0.2.3. (2016).