• This record comes from PubMed

Oxidative stress in the oral cavity is driven by individual-specific bacterial communities

. 2018 ; 4 () : 29. [epub] 20181127

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

The term "bacterial dysbiosis" is being used quite extensively in metagenomic studies, however, the identification of harmful bacteria often fails due to large overlap between the bacterial species found in healthy volunteers and patients. We hypothesized that the pathogenic oral bacteria are individual-specific and they correlate with oxidative stress markers in saliva which reflect the inflammatory processes in the oral cavity. Temporally direct and lagged correlations between the markers and bacterial taxa were computed individually for 26 volunteers who provided saliva samples during one month (21.2 ± 2.7 samples/volunteer, 551 samples in total). The volunteers' microbiomes differed significantly by their composition and also by their degree of microbiome temporal variability and oxidative stress markers fluctuation. The results showed that each of the marker-taxa pairs can have negative correlations in some volunteers while positive in others. Streptococcus mutans, which used to be associated with caries before the metagenomics era, had the most prominent correlations with the oxidative stress markers, however, these correlations were not confirmed in all volunteers. The importance of longitudinal samples collections in correlation studies was underlined by simulation of single sample collections in 1000 different combinations which produced contradictory results. In conclusion, the distinct intra-individual correlation patterns suggest that different bacterial consortia might be involved in the oxidative stress induction in each human subject. In the future, decreasing cost of DNA sequencing will allow to analyze multiple samples from each patient, which might help to explore potential diagnostic applications and understand pathogenesis of microbiome-associated oral diseases.

See more in PubMed

Simón-Soro A, Guillen-Navarro M, Mira A. Metatranscriptomics reveals overall active bacterial composition in caries lesions. J. Oral Microbiol. 2014;6:25443. doi: 10.3402/jom.v6.25443. PubMed DOI PMC

Belda-Ferre P, et al. The oral metagenome in health and disease. ISME J. 2011;6:46–56. doi: 10.1038/ismej.2011.85. PubMed DOI PMC

Rôças IN, Siqueira JF. Characterization of microbiota of root canal-treated teeth with posttreatment disease. J. Clin. Microbiol. 2012;50:1721–1724. doi: 10.1128/JCM.00531-12. PubMed DOI PMC

Loeshe WJ. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 1986;50:353–380. PubMed PMC

Simón-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. 2015;23:76–82. doi: 10.1016/j.tim.2014.10.010. PubMed DOI

Curnutte JT, Whitten DM, Babior BM. Defective superoxide production by granulocytes from patients with chronic granulomatous disease. N. Engl. J. Med. 1974;290:593–597. doi: 10.1056/NEJM197403142901104. PubMed DOI

Nathan CF, Root RK. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J. Exp. Med. 1977;146:1648–1662. doi: 10.1084/jem.146.6.1648. PubMed DOI PMC

Klebanoff SJ. Oxygen metabolism and the toxic properties of phagocytes. Ann. Intern. Med. 1980;93:480–489. doi: 10.7326/0003-4819-93-3-480. PubMed DOI

Nathan CF, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013;13:349–361. doi: 10.1038/nri3423. PubMed DOI PMC

Behuliak M, et al. Variability of thiobarbituric acid reacting substances in saliva. Dis. Markers. 2009;26:49–53. doi: 10.1155/2009/175683. PubMed DOI PMC

Iannitti T, Rottigni V, Palmieri B. Role of free radicals and antioxidant defences in oral cavity- related pathologies. J. Oral Pathol. Med. 2012;41:649–661. doi: 10.1111/j.1600-0714.2012.01143.x. PubMed DOI

Espey MG. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic. Biol. Med. 2013;55:130–140. doi: 10.1016/j.freeradbiomed.2012.10.554. PubMed DOI

Lettrichová I, Tóthová L, Hodosy J, Behuliak M, Celec P. Variability of salivary markers of oxidative stress and antioxidant status in young healthy individuals. Redox Rep. 2015;1:24–30. PubMed PMC

Das D, Bishayi B. Contribution of catalase and superoxide dismutase to the intracellular survival of clinical isolates of Staphylococcus aureus in murine macrophages. Indian J. Microbiol. 2010;50:375–384. doi: 10.1007/s12088-011-0063-z. PubMed DOI PMC

Herman A, et al. The bacterial iprA gene is conserved across Enterobacteriaceae, is involved in oxidative stress resistance, and influences gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 2016;198:2166–2179. doi: 10.1128/JB.00144-16. PubMed DOI PMC

Wang S, et al. Transcriptomic response of Escherichia coli O157:H7 to oxidative stress. Appl. Environ. Microbiol. 2009;75:6110–6123. doi: 10.1128/AEM.00914-09. PubMed DOI PMC

Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J. Biol. Chem. 2008;283:21837–21841. doi: 10.1074/jbc.R700019200. PubMed DOI PMC

Tothova L, Kamodyova N, Cervenka T, Celec P. Salivary markers of oxidative stress in oral diseases. Front. Cell. Infect. Microbiol. 2015;5:73. doi: 10.3389/fcimb.2015.00073. PubMed DOI PMC

Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;19:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC

Ialongo C. Preanalytic of total antioxidant capacity assays performed in serum, plasma, urine and saliva. Clin. Biochem. 2017;50:356–363. doi: 10.1016/j.clinbiochem.2016.11.037. PubMed DOI

Szemes T, et al. On the origin of reactive oxygen species and antioxidative mechanisms in Enterococcus faecalis. Redox Rep. 2010;15:202–206. doi: 10.1179/135100010X12826446921581. PubMed DOI PMC

Ahmadi-Motamayel F, Goodarzi MT, Hendi SS, Kasraei S, Moghimbeigi A. Total antioxidant capacity of saliva and dental caries. Med. Oral Patol. Oral Cir. Bucal. 2013;18:e553–e556. doi: 10.4317/medoral.18762. PubMed DOI PMC

Kumar SV, Kumar RH, Bagewadi N, Krishnan NA. A study to correlate dental caries experience with total antioxidant levels of saliva among adolescents in Mangalore. J. Indian Assoc. Public Health Dent. 2015;13:122–125. doi: 10.4103/2319-5932.159045. DOI

da Silva PV, Troiano JA, Cláudia A, Pessan JP, Antoniali C. Increased activity of the antioxidants systems modulate the oxidative stress in saliva of toddlers with early childhood caries. Arch. Oral Biol. 2016;70:62–66. doi: 10.1016/j.archoralbio.2016.06.003. PubMed DOI

Hodosy J, Celec P. Daytime of sampling, tooth-brushing and ascorbic acid influence salivary thiobarbituric acid reacting substances—a potential clinical marker of gingival status. Dis. Markers. 2005;21:203–207. doi: 10.1155/2005/209643. PubMed DOI PMC

Belstrøm D, et al. Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. PeerJ. 2016;4:e2433. doi: 10.7717/peerj.2433. PubMed DOI PMC

Kamodyova N, Minarik G, Hodosy J, Celec P. Single consumption of Bryndza cheese temporarily affects oral microbiota and salivary markers of oxidative stress. Curr. Microbiol. 2014;69:716–724. doi: 10.1007/s00284-014-0649-x. PubMed DOI

Belstrøm D, et al. Temporal stability of the salivary microbiota in oral health. PLoS One. 2016;11:e0147472. doi: 10.1371/journal.pone.0147472. PubMed DOI PMC

Marti JM, et al. Health and disease imprinted in the time variability of the human microbiome. mSystems. 2017;2:2. doi: 10.1128/mSystems.00144-16. PubMed DOI PMC

Baňasová L, et al. Salivary DNA and markers of oxidative stress in patients with chronic periodontitis. Clin. Oral Investig. 2015;19:201–207. doi: 10.1007/s00784-014-1236-z. PubMed DOI

Fisher C, Mehta P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS One. 2014;9:e102451. doi: 10.1371/journal.pone.0102451. PubMed DOI PMC

Bucci V, et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 2016;17:121. doi: 10.1186/s13059-016-0980-6. PubMed DOI PMC

Stein RR, et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 2013;9:e1003388. doi: 10.1371/journal.pcbi.1003388. PubMed DOI PMC

Yang F, et al. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J. 2011;6:1–10. doi: 10.1038/ismej.2011.71. PubMed DOI PMC

Gross EL, et al. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012;7:e47722. doi: 10.1371/journal.pone.0047722. PubMed DOI PMC

Peterson SN, Nesrud E, Schork NJ, Bretz WA. Dental caries pathogenicity: a genomic and metagenomic perspective. Int. Dent. J. 2011;61:11–22. doi: 10.1111/j.1875-595X.2011.00025.x. PubMed DOI PMC

Li Y, et al. Analysis of the microbiota of black stain in the primary dentition. PLoS One. 2015;10:0137030. PubMed PMC

Jagathrakshakan SNN, Sethumadhava RJJ, Mehta DTT, Ramanathan A. 16S rRNA gene-based metagenomic analysis identifies a novel bacterial co-prevalence pattern in dental caries. Eur. J. Dent. 2015;9:127–132. doi: 10.4103/1305-7456.149661. PubMed DOI PMC

Aas JA, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 2008;46:1407–1417. doi: 10.1128/JCM.01410-07. PubMed DOI PMC

Takeshita T, et al. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study. Sci. Rep. 2016;6:22164. doi: 10.1038/srep22164. PubMed DOI PMC

Tóthová L, Celecová V, Celec P. Salivary markers of oxidative stress and their relation to periodontal and dental status in children. Dis. Markers. 2013;34:9–15. doi: 10.1155/2013/591765. PubMed DOI PMC

Celecová V, Kamodyová N, Tóthová L, Kúdela M, Celec P. Salivary markers of oxidative stress are related to age and oral health in adult non-smokers. J. Oral Pathol. Med. 2013;41:263–266. doi: 10.1111/jop.12008. PubMed DOI

Vlková B, et al. Salivary markers of oxidative stress in patients with oral premalignant lesions. Arch. Oral Biol. 2012;57:1651–1656. doi: 10.1016/j.archoralbio.2012.09.003. PubMed DOI

Vlková B, Celec P. Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? Vivo. 2009;23:343–345. PubMed

Mardinoglu A, et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol. Syst. Biol. 2015;11:834. doi: 10.15252/msb.20156487. PubMed DOI PMC

Almerich-Silla JM, et al. Oxidative stress parameters in saliva and its association with periodontal disease and types of bacteria. Dis. Markers. 2015;2015:653537. doi: 10.1155/2015/653537. PubMed DOI PMC

Tóthová L, Ostatníková D, Šebeková K, Celec P, Hodosy J. Sex differences of oxidative stress markers in young healthy subjects are marker-specific in plasma but not in saliva. Ann. Hum. Biol. 2013;40:175–180. doi: 10.3109/03014460.2012.754495. PubMed DOI

Gonze D, Lahti L, Raes J, Faus K. Multi-stability and the origin of microbial community types. ISME. J. 2017;11:2159–2166. doi: 10.1038/ismej.2017.60. PubMed DOI PMC

Debelius J, et al. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 2016;17:217. doi: 10.1186/s13059-016-1086-x. PubMed DOI PMC

Gilbert JA, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016;535:94–103. doi: 10.1038/nature18850. PubMed DOI

Wang C, Li Z, Wu K. Preliminary study on the rules of Streptococcus mutans reactive oxygen species metabolism. Zhonghua. Kou. Qiang. Ke. Za. Zhi. 2001;36:202–205. PubMed

Fujishima K, et al. dpr and sod in Streptococcus mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2. Appl. Environ. Microbiol. 2013;79:1436–1443. doi: 10.1128/AEM.03306-12. PubMed DOI PMC

Winter SE, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467:426–429. doi: 10.1038/nature09415. PubMed DOI PMC

Naaber P, et al. Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. J. Med. Microbiol. 2004;53:551–554. doi: 10.1099/jmm.0.45595-0. PubMed DOI

Peris-Bondia F, Latorre A, Artacho A, Moya A, D’Auria G. The active human gut microbiota differs from the total microbiota. PLoS One. 2011;6:e22448. doi: 10.1371/journal.pone.0022448. PubMed DOI PMC

Maurice CF, Haiser HJJ, Turnbaugh PJJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152:39–50. doi: 10.1016/j.cell.2012.10.052. PubMed DOI PMC

Palm NW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–1010. doi: 10.1016/j.cell.2014.08.006. PubMed DOI PMC

Simón-Soro A, et al. Revealing microbial recognition by specific antibodies. BMC Microbiol. 2015;15:132. doi: 10.1186/s12866-015-0456-y. PubMed DOI PMC

D’Auria G, et al. Active and secreted IgA-coated bacterial fractions from the human gut reveal an under-represented microbiota core. Sci. Rep. 2013;3:3515. doi: 10.1038/srep03515. PubMed DOI PMC

Džunková M, et al. Active and secretory IgA-coated bacterial fractions elucidate dysbiosis in clostridium difficile infection. mSphere. 2016;1:e00101–e00116. doi: 10.1128/mSphere.00101-16. PubMed DOI PMC

Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016;24:402–413. doi: 10.1016/j.tim.2016.02.002. PubMed DOI

Rojo D, et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol. Rev. 2017;41:453–478. doi: 10.1093/femsre/fuw046. PubMed DOI PMC

Polgárová K, Behuliak M, Celec P. Effect of saliva processing on bacterial DNA extraction. New Microbiol. 2010;33:373–379. PubMed

Sakamoto M, et al. Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes. J. Med. Microbiol. 2004;53:563–571. doi: 10.1099/jmm.0.45576-0. PubMed DOI

Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. doi: 10.1093/nar/gks808. PubMed DOI PMC

Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–864. doi: 10.1093/bioinformatics/btr026. PubMed DOI PMC

Aronesty, E. ea-utils: Command-line tools for processing biological sequencing data. Expression Analysis. https://code.google.com/p/ea-utils/ (2011).

Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI

Wooley JC, Godzik A, Friedberg I. A primer on metagenomics. PLoS Comput. Biol. 2010;6:e1000667. doi: 10.1371/journal.pcbi.1000667. PubMed DOI PMC

Camelo-Castillo A, Benítez-Páez A, Belda-Ferre P, Cabrera-Rubio R, Mira A. Streptococcus dentisani sp. nov., a novel member of the mitis group. Int. J. Syst. Evol. Microbiol. 2014;64:60–65. doi: 10.1099/ijs.0.054098-0. PubMed DOI

Cole JR, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37:D141–D145. doi: 10.1093/nar/gkn879. PubMed DOI PMC

Oksanen, J., et al. Vegan: Community Ecology Package. R package version 2.3-2. (2015).

Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI

Chen W, Zhang CK, Cheng Y, Zhang S, Zhao H. A comparison of methods for clustering 16S rRNA sequences into OTUs. PLoS One. 2013;8:e70837. doi: 10.1371/journal.pone.0070837. PubMed DOI PMC

Witko-Sarsat V, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–1313. doi: 10.1038/ki.1996.186. PubMed DOI

Münch G, et al. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur. J. Clin. Chem. Clin. Biochem. 1997;35:669–677. PubMed

Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004;37:277–285. doi: 10.1016/j.clinbiochem.2003.11.015. PubMed DOI

Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Xia LC, et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 2011;5:S15. doi: 10.1186/1752-0509-5-S2-S15. PubMed DOI PMC

Wei, T. & Simko, V. corrplot: Visualization of a Correlation Matrix. R package version 0.77. (2016).

Eklund, A. beeswarm: The Bee Swarm Plot, an Alternative to Stripchart. R package version 0.2.3. (2016).

Newest 20 citations...

See more in
Medvik | PubMed

Salivary microbiome composition changes after bariatric surgery

. 2020 Nov 18 ; 10 (1) : 20086. [epub] 20201118

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...