The Influence of Suspension Containing Nanodiamonds on the Morphology of the Tooth Tissue Surface in Atomic Force Microscope Observations
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30519594
PubMed Central
PMC6241359
DOI
10.1155/2018/9856851
Knihovny.cz E-zdroje
- MeSH
- čištění zubů metody MeSH
- dospělí MeSH
- lidé MeSH
- mikroskopie atomárních sil metody MeSH
- mladý dospělý MeSH
- nanodiamanty aplikace a dávkování MeSH
- povrchové vlastnosti účinky léků MeSH
- suspenze aplikace a dávkování MeSH
- zubní sklovina účinky léků MeSH
- zuby účinky léků MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nanodiamanty MeSH
- suspenze MeSH
Reduced friction and wear of materials after the use of the carbon nanomaterials including nanodiamonds (NDs) have been confirmed by several studies in material engineering. Mechanical cleaning of the tooth surface by brush bristles should leave as little tissue roughened as possible. Higher surface roughness increases the tissue's wear and encourages the redeposition of the bacteria and the colouring agents present in the diet. Therefore, we evaluated the tooth tissues' surface's morphological changes after brushing them with the NDs suspension. Ten human teeth were brushed with the NDs aqueous suspension. The surfaces were observed using an Atomic Force Microscope (AFM). We found that the nature of the tissue surface became milder and smoother. A number of selected profilometric parameters were compared before and after brushing. We observed that brushing with the suspension of NDs resulted in a significant reduction in the enamel and dentine's surface roughness both in the range of the average parameters (Ra; p-0,0019) and in the detailed parameters (Rsk; p-0,048 and Rku; p-0,036). We concluded that the NDs used in the oral hygiene applications have a potentially protective effect on the enamel and the dentine's surfaces.
Department of Electroradiology State School of Applied Sciences Ul Nowy Świat 4 62 800 Kalisz Poland
Doctorate Studies Pomeranian Medical University Szczecin Ul Rybacka 1 70 204 Szczecin Poland
Zobrazit více v PubMed
Dessombz A., Lignon G., Picaut L., Rouzière S., Berdal A. Mineral studies in enamel, an exemplary model system at the interface between physics, chemistry and medical sciences. Comptes Rendus Chimie. 2016;19(11-12):1656–1664. doi: 10.1016/j.crci.2015.03.009. DOI
Daegling D. J., Hua L.-C., Ungar P. S. The role of food stiffness in dental microwear feature formation. Archives of Oral Biolog. 2016;71:16–23. doi: 10.1016/j.archoralbio.2016.06.018. PubMed DOI
Mathia T. G., Pawlus P., Wieczorowski M. Recent trends in surface metrology. Wear. 2011;271(3-4):494–508. doi: 10.1016/j.wear.2010.06.001. DOI
Heurich E., Beyer M., Jandt K. D., et al. Quantification of dental erosion-A comparison of stylus profilometry and confocal laser scanning microscopy (CLSM) Dental Materials. 2010;26(4):326–336. doi: 10.1016/j.dental.2009.12.001. PubMed DOI
Addy M. Tooth brushing, tooth wear and dentine hypersensitivity - Are they associated? International Dental Journal. 2005;55(4):261–267. doi: 10.1111/j.1875-595X.2005.tb00063.x. PubMed DOI
Bizhang M., Schmidt I., Chun Y. P., Arnold W. H., Zimmer S., Rodella L. F. Toothbrush abrasivity in a long-term simulation on human dentin depends on brushing mode and bristle arrangement. PLoS ONE. 2017;12(2) doi: 10.1371/journal.pone.0172060.e0172060 PubMed DOI PMC
Moore C., Addy M. Wear of dentine in vitro by toothpaste abrasives and detergents alone and combined. Journal of Clinical Periodontology. 2005;32(12):1242–1246. doi: 10.1111/j.1600-051X.2005.00857.x. PubMed DOI
Finke M., Jandt K. D., Parker D. M. The early stages of native enamel dissolution studied with atomic force microscopy. Journal of Colloid and Interface Science. 2000;232(1):156–164. doi: 10.1006/jcis.2000.7200. PubMed DOI
Aykut-Yetkiner A., Attin T., Wiegand A. Prevention of dentine erosion by brushing with anti-erosive toothpastes. Journal of Dentistry. 2014;42(7):856–861. doi: 10.1016/j.jdent.2014.03.011. PubMed DOI
Dickson W. J., Vandewalle K. S., Lien W., Dixon S. A., Summitt J. B. Effects of cyclic loading and toothbrush abrasion on cervical lesion formation. General dentistry. 2015;63:1–5. PubMed
Mitura S., Mitura A., Niedzielski P., Couvrat P. Nanocrystalline Diamond. In: Mitura S., editor. Nanotechnology in Material Science. Elsevier; 2000.
Zhai W., Srikanth N., Kong L. B., Zhou K. Carbon nanomaterials in tribology. Carbon. 2017;119:150–171. doi: 10.1016/j.carbon.2017.04.027. DOI
Elomaa O., Hakala T. J., Myllymäki V., et al. Diamond nanoparticles in ethylene glycol lubrication on steel-steel high load contact. Diamond and Related Materials. 2013;34:89–94. doi: 10.1016/j.diamond.2013.02.008. DOI
Solarska K., Gajewska A., Kaczorowski W., Bartosz G., Mitura K. Effect of nanodiamond powders on the viability and production of reactive oxygen and nitrogen species by human endothelial cells. Diamond and Related Materials. 2012;21:107–113. doi: 10.1016/j.diamond.2011.10.020. DOI
International Standard Organization, Dentistry- Dentifrices- Requirements- test method and marking, ISO 11609: 2010.
West N. X., Hughes J. A., Addy M. Erosion of dentine and enamel in vitro by dietary acids: the effect of temperature, acid character, concentration and exposure time. Journal of Oral Rehabilitation. 2000;27(10):875–880. doi: 10.1046/j.1365-2842.2000.00583.x. PubMed DOI
Mitura S., Mitura K., Niedzielski P., Louda P., Danilenko V. Nanocrystalline diamond, its synthesis, properties and applications. Journal of Achievements in Materials and Manufacturing Engineering. 2006;16(1-2):9–16.
Ajami S., Pakshir H. R., Babanouri N. Impact of nanohydroxyapatite on enamel surface roughness and color change after orthodontic debonding. Progress in Orthodontics. 2016;17(1) doi: 10.1186/s40510-016-0124-2. PubMed DOI PMC
Bastos F. S., Oliveira E. A., Fonseca L. G., Vargas S. M., Las Casas E. B. A FEM-based study on the influence of skewness and kurtosis surface texture parameters in human dental occlusal contact. Journal of Computational and Applied Mathematics. 2016;295:139–148. doi: 10.1016/j.cam.2015.01.018. DOI
Kumar S., Kumari M., Acharya S., Prasad R. Comparison of surface abrasion produced on the enamel surface by a standard dentifrice using three different toothbrush bristle designs: A profilometric in vitro study. Journal of Conservative Dentistry. 2014;17(4):369–373. doi: 10.4103/0972-0707.136513. PubMed DOI PMC
Rios D., Honório H. M., Araújo P. A., Machado M. A. Wear and superficial roughness of glass ionomer cements used as sealants, after simulated toothbrushing. Pesquisa Odontológica Brasileira. 2002;16(4):343–348. doi: 10.1590/S1517-74912002000400011. PubMed DOI
Tayebi N., Polycarpou A. A. Modeling the effect of skewness and kurtosis on the static friction coefficient of rough surfaces. Tribology International. 2004;37(6):491–505. doi: 10.1016/j.triboint.2003.11.010. DOI
Whitehead S. A., Shearer A. C., Watts D. C., Wilson N. H. F. Comparison of two stylus methods for measuring surface texture. Dental Materials. 1999;15(2):79–86. doi: 10.1016/S0109-5641(99)00017-2. PubMed DOI
Elomaa O., Oksanen J., Hakala T. J., Shenderova O., Koskinen J. A comparison of tribological properties of evenly distributed and agglomerated diamond nanoparticles in lubricated high-load steel-steel contact. Tribology International. 2014;71:62–68. doi: 10.1016/j.triboint.2013.11.007. DOI
Wiegand A., Schlueter N. The Role of Oral Hygiene: Does Toothbrushing Harm? In: Luss A., Ganss C., editors. Erosive Tooth Wear. Vol. 25. Basel, Switzerland: Karger; 2014. pp. 215–219. (Monographs in Oral Science). PubMed DOI
Hashimoto Y., Hashimoto Y., Nishiura A., Matsumoto N. Atomic force microscopy observation of enamel surfaces treated with selfetching primer. Dental Materials. 2013;32(1):181–188. doi: 10.4012/dmj.2012-227. PubMed DOI
Georgescu A., Iovan G., Stoleriu S., Topoliceanu C., Andrian S. Atomic force microscopy study regarding the influence of etching on affected and sclerotic dentine. Romanian Journal of Morphology and Embryology. 2010;51(2):299–302. PubMed
Hannig M., Hannig C. Nanomaterials in preventive dentistry. Nature Nanotechnology. 2010;5(8):565–569. doi: 10.1038/nnano.2010.83. PubMed DOI
Miyazaki M., Hinoura K., Honjo G., Onose H. Effect of self-etching primer application method on enamel bond strength. American Journal of Dentistry. 2002;15(6):412–416. PubMed
Poggio C., Lombardini M., Vigorelli P., Ceci M. Analysis of dentin/enamel remineralization by a CPP-ACP paste: AFM and SEM study. Scanning. 2013;35(6):366–374. doi: 10.1002/sca.21077. PubMed DOI
Kubala E., Strzelecka Pa., Grzegocka Ma., et al. A review of selected studies that determine the physical and chemical properties of saliva in the field of dental treatment. BioMed Research International. 2018;2018:13. doi: 10.1155/2018/6572381.6572381 PubMed DOI PMC