Hydration of Ordinary Portland Cement in Presence of Lead Sorbed on Ceramic Sorbent

. 2018 Dec 21 ; 12 (1) : . [epub] 20181221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30577591

Grantová podpora
16-13778S Grantová Agentura České Republiky

Lead, a highly toxic element, is frequently present in various solid wastes as well as in industrial effluents. Sorption with a low cost sorbent is a simple way of Pb removal from liquid streams, but stabilization of spent sorbent has to be ensured in order to prevent Pb leaching out and possible environmental contamination. In previous research, ceramic sorbent, generated as waste product in brick industry, was tested as sorbent and proved high sorption capacity for lead. Lead was sorbed partially as hydrocerussite and partially as adsorbed surface layer. The Pb leaching from sorbent was very high and thus further immobilization of sorbent was necessary. Lead, as well as other heavy metals, is known as retarder of the hydration process of Ordinary Portland Cement (OPC), used for the immobilization. In this paper, influence of sorbed Pb and PbO, as reference compound, on cement hydration was studied by calorimetry, thermogravimetry and Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy (MAS NMR). The sorbed lead was found to be less detrimental to hydration retardation due to the lower solubility of precipitated hydrocerussite in basic environment compared to PbO, which forms plumbate anion.

Zobrazit více v PubMed

Chen L., Xu Z., Liu M., Huang Y., Fan R., Su Y., Hu G., Peng X. Lead exposure assessment from study near a lead-acid battery factory in China. Sci. Total Environ. 2012;429:191–198. doi: 10.1016/j.scitotenv.2012.04.015. PubMed DOI

Femina Carolin C., Senthil Kumar P., Saravanan A., Janet Joshiba G., Naushad M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017;5:2782–2799. doi: 10.1016/j.jece.2017.05.029. DOI

Babel S., Kurniawan T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. B. 2003;97:219–243. doi: 10.1016/S0304-3894(02)00263-7. PubMed DOI

Chowdhury S., Mazumder M.A.J., Al-Attas O., Husain T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016;569:476–488. doi: 10.1016/j.scitotenv.2016.06.166. PubMed DOI

Ribeiro C., Scheufele F.B., Espinoza-Quinones F.R., Modenes A.N., Adeodato Vieira M.G., Kroumov A.D., Borba C.E. A comprehensive evaluation of heavy metals removal from battery industry wastewaters by applying bio-residue, mineral and commercial adsorbent materials. J. Mater. Sci. 2018;53:7976–7995. doi: 10.1007/s10853-018-2150-6. DOI

Simeonov V., Stratis J.A., Samara C., Zachariadis G., Voutsa D., Anthemidis A., Sofoniou M., Kouimtzis T. Assessment of the surface water quality in Northern Greece. Water Res. 2003;37:4119–4124. doi: 10.1016/S0043-1354(03)00398-1. PubMed DOI

Demirak A., Yilmaz F., Tuna A.L., Ozdemir N. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere. 2006;63:1451–1458. doi: 10.1016/j.chemosphere.2005.09.033. PubMed DOI

Tamasi G., Cini R. Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Sci. Total Environ. 2004;327:41–51. doi: 10.1016/j.scitotenv.2003.10.011. PubMed DOI

Directive 2006/11/EC of the European Parliament and of the Council of 15 February 2006 on Pollution Caused by Certain Dangerous Substances Discharged into the Aquatic Environment of the Community. [(accessed on 17 December 2018)]; Available online: https://eur-lex.europa.eu/eli/dir/2006/11/oj.

Durães N., Bobos I., Ferreira da Silva E. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal) Environ. Sci. Pollut. Res. 2017;24:4562–4576. doi: 10.1007/s11356-016-8161-4. PubMed DOI

Barakat M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011;4:361–377. doi: 10.1016/j.arabjc.2010.07.019. DOI

Burakov A.E., Galunin E.V., Burakova I.V., Kucherova A.E., Agarwal S., Tkachev A.G., Gupta V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018;148:702–712. doi: 10.1016/j.ecoenv.2017.11.034. PubMed DOI

Uddin M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017;308:438–462. doi: 10.1016/j.cej.2016.09.029. DOI

Zhao Y.N. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environ. Eng. Sci. 2016;33:443–454. doi: 10.1089/ees.2015.0166. DOI

Adebisi G.A., Chowdhury Z.Z., Alaba P.A. Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J. Clean. Prod. 2017;148:958–968. doi: 10.1016/j.jclepro.2017.02.047. DOI

Ahmad Z., Gao B., Mosa A., Yu H., Yin X., Bashir A., Ghoveisi H., Wang S. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 2018;180:437–449. doi: 10.1016/j.jclepro.2018.01.133. DOI

Srivastava S., Agrawal S.B., Mondal M.K. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ. Sci. Pollut. Res. 2015;22:15386–15415. doi: 10.1007/s11356-015-5278-9. PubMed DOI

Xu J., Cao Z., Zhang Y., Yuan Z., Lou Z., Xu X., Wang X. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere. 2018;195:351–364. doi: 10.1016/j.chemosphere.2017.12.061. PubMed DOI

Grace M.A., Clifford E., Healy M.G. The potential for the use of waste products from a variety of sectors in water treatment processes. J. Clean. Prod. 2016;137:788–802. doi: 10.1016/j.jclepro.2016.07.113. DOI

Jelic I., Sljivic-Ivanovic M., Dimovic S., Antonijevic D., Jovic M., Mirkovic M., Smiciklas I. The applicability of construction and demolition waste components for radionuclide sorption. J. Clean. Prod. 2018;171:322–332. doi: 10.1016/j.jclepro.2017.09.220. DOI

Petrella A., Petruzzelli V., Ranieri E., Catalucci V., Petruzzelli D. Sorption of Pb(II), Cd(II), and Ni(II) from single- and multimetal solutions by recycled waste porous glass. Chem. Eng. Commun. 2016;203:940–947. doi: 10.1080/00986445.2015.1012255. DOI

Doušová B., Koloušek D., Keppert M., Machovič V., Lhotka M., Urbanová M., Brus J., Holcová L. Use of waste ceramics in adsorption technologies. Appl. Clay Sci. 2016;134:145–152. doi: 10.1016/j.clay.2016.02.016. DOI

Navrátilová E., Rovnaníková P. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Constr. Build. Mater. 2016;120:530–539. doi: 10.1016/j.conbuildmat.2016.05.062. DOI

Guo B., Liu B., Yang J., Zhang S. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manag. 2017;193:410–422. doi: 10.1016/j.jenvman.2017.02.026. PubMed DOI

Weeks C., Hand R.J., Sharp J.H. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cem. Concr. Compos. 2008;30:970–978. doi: 10.1016/j.cemconcomp.2008.07.005. DOI

Bullard J.W., Jennings H.M., Livingston R.A., Nonat A., Scherer G.W., Schweitzer J.S., Scrivener K.L., Thomas J.J. Mechanisms of cement hydration. Cem. Concr. Compos. 2011;41:1208–1223. doi: 10.1016/j.cemconres.2010.09.011. DOI

Paul S.C., van Rooye A.S., van Zijl G.P.A.G., Petrik L.F. Properties of cement-based composites using nanoparticles: A comprehensive review. Constr. Build. Mater. 2018;189:1019–1034. doi: 10.1016/j.conbuildmat.2018.09.062. DOI

Trussel S., Spence R.D. A review of solidification/stabilization interferences. Waste Manag. 1994;14:507–519. doi: 10.1016/0956-053X(94)90134-1. DOI

Barbir D., Dabić P., Krolo P. Hydration study of ordinary portland cement in the presence of lead(II) oxide. Chem. Biochem. Eng. Q. 2013;27:95–99.

Nestle N. NMR relaxometry study of cement hydration in the presence of different oxidic fine fraction materials. Solid State Nucl. Magn. Reson. 2004;25:80–83. doi: 10.1016/j.ssnmr.2003.05.003. PubMed DOI

Cheeseman C.R., Asavapisit S. Effect of calcium chloride on the hydration and leaching of lead-retarded cement. Cem. Conc. Res. 1999;29:885–892. doi: 10.1016/S0008-8846(99)00053-8. DOI

Gineys N., Aouad G., Damidot D. Managing trace elements in Portland cement—Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts. Cem. Concr. Compos. 2010;32:563–570. doi: 10.1016/j.cemconcomp.2010.06.002. DOI

Gollmann M.A.C., da Silva M.M., Masuero A.B., dos Santos J.H.Z. Stabilization and solidification of Pb in cement matrices. J. Hazard. Mater. 2010;179:507–514. doi: 10.1016/j.jhazmat.2010.03.032. PubMed DOI

Nikolić V., Komljenović M., Džunuzović N., Miladinović Z. The influence of Pb addition on the properties of fly ash-based geopolymers. J. Hazard. Mater. 2018;350:98–107. doi: 10.1016/j.jhazmat.2018.02.023. PubMed DOI

Koplík J., Kalina L., Másilko J., Šoukal F. The characterization of fixation of Ba, Pb, and Cu in alkali-activated fly ash/blast furnace slag matrix. Materials. 2016;9:533. doi: 10.3390/ma9070533. PubMed DOI PMC

Wang Y.-S., Dai J.-G., Wang L., Tsang D.C.W., Poon C.S. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. Chemosphere. 2018;190:90–96. doi: 10.1016/j.chemosphere.2017.09.114. PubMed DOI

Keppert M., Doušová B., Reiterman P., Koloušek D., Záleská M., Černý R. Application of heavy metals sorbent as reactive component in cementitious composites. J. Clean. Prod. 2018;199:565–573. doi: 10.1016/j.jclepro.2018.07.198. DOI

Tydlitát V., Tesárek P., Černý R. Effects of the type of calorimeter and the use of plasticizers and hydrophobizers on the measured hydration heat development of FGD gypsum. J. Therm. Anal. Calorim. 2008;91:791–796. doi: 10.1007/s10973-007-8709-0. DOI

Brus J. Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI

Vidale M., Craig O., Desset F., Guida G., Bianchetti P., Sidoti G., Mariottini M., Battistella E. A chlorite container found on the surface of shahdad (Kerman, Iran) and its cosmetic content. Iran. 2012;50:27–44. doi: 10.1080/05786967.2012.11834711. DOI

Mackenzie K.J.D., Smith M.E. Multinuclear Solid-State NMR of Inorganic Materials. Pergamon; London, UK: 2002.

Keppert M., Urbanová M., Brus J., Čáchová M., Fořt J., Trník A., Scheinherrová L., Záleská M., Černý R. Rational design of cement composites containing pozzolanic additions. Constr. Build. Mater. 2017;148:411–418. doi: 10.1016/j.conbuildmat.2017.05.032. DOI

Andersen M.D., Jakobsen H.J., Skibsted J. Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: A high-field Al-27 and Si-29 MAS NMR investigation. Inorg. Chem. 2003;42:2280–2287. doi: 10.1021/ic020607b. PubMed DOI

Regulation of Czech Republic Nr. 294/2005 (Conform with EN 12457) on Waste Landfilling. [(accessed on 17 December 2018)]; Available online: https://www.zakonyprolidi.cz/cs/2005-294.

Jerman M., Tydlitát V., Keppert M., Čáchová M., Černý R. Characterization of early-age hydration processes in lime-ceramic binders using isothermal calorimetry, X-ray diffraction and scanning electron microscopy. Thermochim. Acta. 2016;633:108–115. doi: 10.1016/j.tca.2016.04.005. DOI

Kyle J.H., Breuer P.L., Bunney K.G., Pleysier R., May P.M. Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing. Part 1: Mineralogy, aqueous chemistry and toxicity. Hydromet. 2011;107:91–100. doi: 10.1016/j.hydromet.2011.01.010. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...