Hydration of Ordinary Portland Cement in Presence of Lead Sorbed on Ceramic Sorbent
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-13778S
Grantová Agentura České Republiky
PubMed
30577591
PubMed Central
PMC6337679
DOI
10.3390/ma12010019
PII: ma12010019
Knihovny.cz E-zdroje
- Klíčová slova
- MAS NMR spectroscopy, calorimetry, hydration, lead removal, sorption, thermogravimetry,
- Publikační typ
- časopisecké články MeSH
Lead, a highly toxic element, is frequently present in various solid wastes as well as in industrial effluents. Sorption with a low cost sorbent is a simple way of Pb removal from liquid streams, but stabilization of spent sorbent has to be ensured in order to prevent Pb leaching out and possible environmental contamination. In previous research, ceramic sorbent, generated as waste product in brick industry, was tested as sorbent and proved high sorption capacity for lead. Lead was sorbed partially as hydrocerussite and partially as adsorbed surface layer. The Pb leaching from sorbent was very high and thus further immobilization of sorbent was necessary. Lead, as well as other heavy metals, is known as retarder of the hydration process of Ordinary Portland Cement (OPC), used for the immobilization. In this paper, influence of sorbed Pb and PbO, as reference compound, on cement hydration was studied by calorimetry, thermogravimetry and Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy (MAS NMR). The sorbed lead was found to be less detrimental to hydration retardation due to the lower solubility of precipitated hydrocerussite in basic environment compared to PbO, which forms plumbate anion.
Zobrazit více v PubMed
Chen L., Xu Z., Liu M., Huang Y., Fan R., Su Y., Hu G., Peng X. Lead exposure assessment from study near a lead-acid battery factory in China. Sci. Total Environ. 2012;429:191–198. doi: 10.1016/j.scitotenv.2012.04.015. PubMed DOI
Femina Carolin C., Senthil Kumar P., Saravanan A., Janet Joshiba G., Naushad M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017;5:2782–2799. doi: 10.1016/j.jece.2017.05.029. DOI
Babel S., Kurniawan T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. B. 2003;97:219–243. doi: 10.1016/S0304-3894(02)00263-7. PubMed DOI
Chowdhury S., Mazumder M.A.J., Al-Attas O., Husain T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016;569:476–488. doi: 10.1016/j.scitotenv.2016.06.166. PubMed DOI
Ribeiro C., Scheufele F.B., Espinoza-Quinones F.R., Modenes A.N., Adeodato Vieira M.G., Kroumov A.D., Borba C.E. A comprehensive evaluation of heavy metals removal from battery industry wastewaters by applying bio-residue, mineral and commercial adsorbent materials. J. Mater. Sci. 2018;53:7976–7995. doi: 10.1007/s10853-018-2150-6. DOI
Simeonov V., Stratis J.A., Samara C., Zachariadis G., Voutsa D., Anthemidis A., Sofoniou M., Kouimtzis T. Assessment of the surface water quality in Northern Greece. Water Res. 2003;37:4119–4124. doi: 10.1016/S0043-1354(03)00398-1. PubMed DOI
Demirak A., Yilmaz F., Tuna A.L., Ozdemir N. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere. 2006;63:1451–1458. doi: 10.1016/j.chemosphere.2005.09.033. PubMed DOI
Tamasi G., Cini R. Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Sci. Total Environ. 2004;327:41–51. doi: 10.1016/j.scitotenv.2003.10.011. PubMed DOI
Directive 2006/11/EC of the European Parliament and of the Council of 15 February 2006 on Pollution Caused by Certain Dangerous Substances Discharged into the Aquatic Environment of the Community. [(accessed on 17 December 2018)]; Available online: https://eur-lex.europa.eu/eli/dir/2006/11/oj.
Durães N., Bobos I., Ferreira da Silva E. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal) Environ. Sci. Pollut. Res. 2017;24:4562–4576. doi: 10.1007/s11356-016-8161-4. PubMed DOI
Barakat M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011;4:361–377. doi: 10.1016/j.arabjc.2010.07.019. DOI
Burakov A.E., Galunin E.V., Burakova I.V., Kucherova A.E., Agarwal S., Tkachev A.G., Gupta V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018;148:702–712. doi: 10.1016/j.ecoenv.2017.11.034. PubMed DOI
Uddin M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017;308:438–462. doi: 10.1016/j.cej.2016.09.029. DOI
Zhao Y.N. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environ. Eng. Sci. 2016;33:443–454. doi: 10.1089/ees.2015.0166. DOI
Adebisi G.A., Chowdhury Z.Z., Alaba P.A. Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J. Clean. Prod. 2017;148:958–968. doi: 10.1016/j.jclepro.2017.02.047. DOI
Ahmad Z., Gao B., Mosa A., Yu H., Yin X., Bashir A., Ghoveisi H., Wang S. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 2018;180:437–449. doi: 10.1016/j.jclepro.2018.01.133. DOI
Srivastava S., Agrawal S.B., Mondal M.K. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ. Sci. Pollut. Res. 2015;22:15386–15415. doi: 10.1007/s11356-015-5278-9. PubMed DOI
Xu J., Cao Z., Zhang Y., Yuan Z., Lou Z., Xu X., Wang X. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere. 2018;195:351–364. doi: 10.1016/j.chemosphere.2017.12.061. PubMed DOI
Grace M.A., Clifford E., Healy M.G. The potential for the use of waste products from a variety of sectors in water treatment processes. J. Clean. Prod. 2016;137:788–802. doi: 10.1016/j.jclepro.2016.07.113. DOI
Jelic I., Sljivic-Ivanovic M., Dimovic S., Antonijevic D., Jovic M., Mirkovic M., Smiciklas I. The applicability of construction and demolition waste components for radionuclide sorption. J. Clean. Prod. 2018;171:322–332. doi: 10.1016/j.jclepro.2017.09.220. DOI
Petrella A., Petruzzelli V., Ranieri E., Catalucci V., Petruzzelli D. Sorption of Pb(II), Cd(II), and Ni(II) from single- and multimetal solutions by recycled waste porous glass. Chem. Eng. Commun. 2016;203:940–947. doi: 10.1080/00986445.2015.1012255. DOI
Doušová B., Koloušek D., Keppert M., Machovič V., Lhotka M., Urbanová M., Brus J., Holcová L. Use of waste ceramics in adsorption technologies. Appl. Clay Sci. 2016;134:145–152. doi: 10.1016/j.clay.2016.02.016. DOI
Navrátilová E., Rovnaníková P. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Constr. Build. Mater. 2016;120:530–539. doi: 10.1016/j.conbuildmat.2016.05.062. DOI
Guo B., Liu B., Yang J., Zhang S. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manag. 2017;193:410–422. doi: 10.1016/j.jenvman.2017.02.026. PubMed DOI
Weeks C., Hand R.J., Sharp J.H. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cem. Concr. Compos. 2008;30:970–978. doi: 10.1016/j.cemconcomp.2008.07.005. DOI
Bullard J.W., Jennings H.M., Livingston R.A., Nonat A., Scherer G.W., Schweitzer J.S., Scrivener K.L., Thomas J.J. Mechanisms of cement hydration. Cem. Concr. Compos. 2011;41:1208–1223. doi: 10.1016/j.cemconres.2010.09.011. DOI
Paul S.C., van Rooye A.S., van Zijl G.P.A.G., Petrik L.F. Properties of cement-based composites using nanoparticles: A comprehensive review. Constr. Build. Mater. 2018;189:1019–1034. doi: 10.1016/j.conbuildmat.2018.09.062. DOI
Trussel S., Spence R.D. A review of solidification/stabilization interferences. Waste Manag. 1994;14:507–519. doi: 10.1016/0956-053X(94)90134-1. DOI
Barbir D., Dabić P., Krolo P. Hydration study of ordinary portland cement in the presence of lead(II) oxide. Chem. Biochem. Eng. Q. 2013;27:95–99.
Nestle N. NMR relaxometry study of cement hydration in the presence of different oxidic fine fraction materials. Solid State Nucl. Magn. Reson. 2004;25:80–83. doi: 10.1016/j.ssnmr.2003.05.003. PubMed DOI
Cheeseman C.R., Asavapisit S. Effect of calcium chloride on the hydration and leaching of lead-retarded cement. Cem. Conc. Res. 1999;29:885–892. doi: 10.1016/S0008-8846(99)00053-8. DOI
Gineys N., Aouad G., Damidot D. Managing trace elements in Portland cement—Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts. Cem. Concr. Compos. 2010;32:563–570. doi: 10.1016/j.cemconcomp.2010.06.002. DOI
Gollmann M.A.C., da Silva M.M., Masuero A.B., dos Santos J.H.Z. Stabilization and solidification of Pb in cement matrices. J. Hazard. Mater. 2010;179:507–514. doi: 10.1016/j.jhazmat.2010.03.032. PubMed DOI
Nikolić V., Komljenović M., Džunuzović N., Miladinović Z. The influence of Pb addition on the properties of fly ash-based geopolymers. J. Hazard. Mater. 2018;350:98–107. doi: 10.1016/j.jhazmat.2018.02.023. PubMed DOI
Koplík J., Kalina L., Másilko J., Šoukal F. The characterization of fixation of Ba, Pb, and Cu in alkali-activated fly ash/blast furnace slag matrix. Materials. 2016;9:533. doi: 10.3390/ma9070533. PubMed DOI PMC
Wang Y.-S., Dai J.-G., Wang L., Tsang D.C.W., Poon C.S. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. Chemosphere. 2018;190:90–96. doi: 10.1016/j.chemosphere.2017.09.114. PubMed DOI
Keppert M., Doušová B., Reiterman P., Koloušek D., Záleská M., Černý R. Application of heavy metals sorbent as reactive component in cementitious composites. J. Clean. Prod. 2018;199:565–573. doi: 10.1016/j.jclepro.2018.07.198. DOI
Tydlitát V., Tesárek P., Černý R. Effects of the type of calorimeter and the use of plasticizers and hydrophobizers on the measured hydration heat development of FGD gypsum. J. Therm. Anal. Calorim. 2008;91:791–796. doi: 10.1007/s10973-007-8709-0. DOI
Brus J. Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI
Vidale M., Craig O., Desset F., Guida G., Bianchetti P., Sidoti G., Mariottini M., Battistella E. A chlorite container found on the surface of shahdad (Kerman, Iran) and its cosmetic content. Iran. 2012;50:27–44. doi: 10.1080/05786967.2012.11834711. DOI
Mackenzie K.J.D., Smith M.E. Multinuclear Solid-State NMR of Inorganic Materials. Pergamon; London, UK: 2002.
Keppert M., Urbanová M., Brus J., Čáchová M., Fořt J., Trník A., Scheinherrová L., Záleská M., Černý R. Rational design of cement composites containing pozzolanic additions. Constr. Build. Mater. 2017;148:411–418. doi: 10.1016/j.conbuildmat.2017.05.032. DOI
Andersen M.D., Jakobsen H.J., Skibsted J. Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: A high-field Al-27 and Si-29 MAS NMR investigation. Inorg. Chem. 2003;42:2280–2287. doi: 10.1021/ic020607b. PubMed DOI
Regulation of Czech Republic Nr. 294/2005 (Conform with EN 12457) on Waste Landfilling. [(accessed on 17 December 2018)]; Available online: https://www.zakonyprolidi.cz/cs/2005-294.
Jerman M., Tydlitát V., Keppert M., Čáchová M., Černý R. Characterization of early-age hydration processes in lime-ceramic binders using isothermal calorimetry, X-ray diffraction and scanning electron microscopy. Thermochim. Acta. 2016;633:108–115. doi: 10.1016/j.tca.2016.04.005. DOI
Kyle J.H., Breuer P.L., Bunney K.G., Pleysier R., May P.M. Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing. Part 1: Mineralogy, aqueous chemistry and toxicity. Hydromet. 2011;107:91–100. doi: 10.1016/j.hydromet.2011.01.010. DOI