The Characterization of Fixation of Ba, Pb, and Cu in Alkali-Activated Fly Ash/Blast Furnace Slag Matrix
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28773655
PubMed Central
PMC5456941
DOI
10.3390/ma9070533
PII: ma9070533
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray photoelectron spectroscopy, alkali-activated materials, fixation, heavy metals,
- Publikační typ
- časopisecké články MeSH
The fixation of heavy metals (Ba, Cu, Pb) in an alkali-activated matrix was investigated. The matrix consisted of fly ash and blast furnace slag (BFS). The mixture of NaOH and Na-silicate was used as alkaline activator. Three analytical techniques were used to describe the fixation of heavy metals-X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD). All heavy metals formed insoluble salts after alkaline activation. Ba was fixed as BaSO₄, and only this product was crystalline. EDS mapping showed that Ba was cumulated in some regions and formed clusters. Pb was present in the form of Pb(OH)₂ and was dispersed throughout the matrix on the edges of BFS grains. Cu was fixed as Cu(OH)₂ and also was cumulated in some regions and formed clusters. Cu was present in two different chemical states; apart from Cu(OH)₂, a Cu-O bond was also identified.
Zobrazit více v PubMed
Shi C., Fernandéz-Jimenéz A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater. 2006;B137:1656–1663. doi: 10.1016/j.jhazmat.2006.05.008. PubMed DOI
Chang H.O. Hazardous and Radioactive Waste Treatment Technologies Handbook. CRC Press LLC; Boca Raton, FL, USA: 2001.
Shi C., Krivenko P.V., Roy D. Alkali-Activated Cements and Concretes. Taylor & Francis; New York, NY, USA: 2006.
Purdon A.O. The action of alkalis on blast-furnace slag. J. Soc. Chem. Ind. 1940;59:191–202.
Provis J.L., van Deventer J.S.J. Alkali Activated Materials: State-of-the Art-Report. Springer; Dorderecht, The Netherlands: 2014.
Fernandéz-Jimenéz A., Palomo A., Revuelta D. Akali activation of industrial by-products to develop new eath-friendly cements; Proceeding of the 11th International Conference on Non-Conventional Materials and Technologies; Bath, UK. 6–9 September 2009; pp. 1–15.
Myers R.J., Bernal S.A., San Nicolas R., Provis J.L. Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross linked substituted tobermorite model. Langmuir. 2013;29:5294–5306. doi: 10.1021/la4000473. PubMed DOI
Bernal S.A., Provis J.L., de Mejía Gutierez R., Rose V. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 2011;33:46–54. doi: 10.1016/j.cemconcomp.2010.09.004. DOI
Escalante-Garcia J., Fuentes A.F., Gorokhovsky A., Fraire-Luna P.E., Mendoza-Suarez G. Hydration products and reactivity of blast-furnace slag activated by various alkalis. J. Am. Ceram. Soc. 2003;86:2148–2153. doi: 10.1111/j.1151-2916.2003.tb03623.x. DOI
Ben Haha M., Lothenbach B., Le Saout G., Winnefeld F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO. Cem. Concr. Res. 2011;41:955–963. doi: 10.1016/j.cemconres.2011.05.002. DOI
Komnitsas K., Zaharaki D. Geopolymerisation: A review and prospects for the minerals industry. Min. Eng. 2007;20:1261–2277. doi: 10.1016/j.mineng.2007.07.011. DOI
Provis J.L., Lukey G.C., van Deventer J.S.J. Do geopolymers actually contain zeolites? A reexamination of existing results. Chem. Mater. 2005;17:3075–3085. doi: 10.1021/cm050230i. DOI
Puertas F., Martínez-ramírez S., Alonso S., Vázquez T. Alkali-activated fly ash/slag cement. Strength behavior and hydration products. Cem. Concr. Res. 2000;30:1625–1632. doi: 10.1016/S0008-8846(00)00298-2. DOI
Van Jaarsveld J.G.S., van Deventer J.S.J., Lorenzen L. Factor affecting the immobilization of metals in geopolymerized fly ash. Metall. Mater. Trans. 1998;29B:283–291. doi: 10.1007/s11663-998-0032-z. DOI
Phair J.W., van Deventer J.S.J., Smith J.D. Effect of Al source and alkali activation on Pb and Cu immobilization in fly-ash based “geopolymers”. App. Geochem. 2004;19:423–434. doi: 10.1016/S0883-2927(03)00151-3. DOI
Xu J.Z., Zhou Y.L., Chang Q., Qu H.Q. Study on the factors affecting the immobilization of heavy metals in fly ash-based geopolymers. Mater. Lett. 2006;60:820–822. doi: 10.1016/j.matlet.2005.10.019. DOI
Palomo A., de la Fuente J.I.L. Alkali-activated cementious materials: Alternative matrices for the immobilization of hazardous wastes Part I. Stabilization of boron. Cem. Conc. Res. 2003;33:281–288. doi: 10.1016/S0008-8846(02)00963-8. DOI
Zhang J., Provis J.L., Feng S., van Deventer J.S.J. Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+ J. Hazard. Mater. 2008;157:587–598. doi: 10.1016/j.jhazmat.2008.01.053. PubMed DOI
Fernández-Jiménez A., Palomo A., Macphee D.E., Lachowski E.E. Fixing arsenic in alkali-activated cementious matrices. J. Am. Ceram. Soc. 2005;88:1122–1126. doi: 10.1111/j.1551-2916.2005.00224.x. DOI
Phair J.W., van Deventer J.S.J. Effect of silicate activator pH on the leaching and material characteristic of waste-based inorganic polymers. Min. Eng. 2001;14:289–304. doi: 10.1016/S0892-6875(01)00002-4. DOI
Zhang Y., Sun W., Chen Q., Chen L. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. J. Hazard. Mater. 2007;143:206–213. PubMed
Deja J. Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem. Concr. Res. 2002;32:1971–1979. doi: 10.1016/S0008-8846(02)00904-3. DOI
Škvára F., Kopecký L., Šmilauer V., Bittnar Z. Material and structural characterization of alkali activated low-calcium brown coal fly ash. J. Hazard. Mater. 2009;168:711–720. doi: 10.1016/j.jhazmat.2009.02.089. PubMed DOI
Zhang J., Provis J.L., Feng D., van Deventer J.S.J. The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers. Cem. Concr. Res. 2008;38:681–688. doi: 10.1016/j.cemconres.2008.01.006. DOI
Bankowski P., Zhou L., Hodges R. Using inorganic polymer to reduce leach rates of metals from brown coal fly ash. Min. Eng. 2004;17:159–166. doi: 10.1016/j.mineng.2003.10.024. DOI
Álvarez-Ayuso E., Querol X., Plana F., Alastuey A., Moreno N., Izquierdo M., Font O., Moreno T., Diez S., Vázquez E., et al. Environmental, physical and structural characterization of geopolymer matrixes synthesized from coal (co-)combustion fly ash. J. Hazard. Mater. 2008;154:175–183. doi: 10.1016/j.jhazmat.2007.10.008. PubMed DOI
Fernández Pereira C., Luna Y., Querol X., Antenucci D., Vale J. Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel. 2009;88:1185–1193. doi: 10.1016/j.fuel.2008.01.021. DOI
Li F., Li Q., Zhai J., Sheng G. Effect of zeolitization of CFBC fly ash on immobilization of Cu, Pb and Cr. Ind. Eng. Chem. Res. 2007;46:7087–7095. doi: 10.1021/ie070218v. DOI
Palomo A., Palacios M. Alkali-activated matrices for the immobilization of hazardous waste Part II. Cem. Concr. Res. 2003;33:289–295. doi: 10.1016/S0008-8846(02)00964-X. DOI
Watts J.F., Wolstenholme J. An Introduction to Surface Analysis by XPS and AES. John Wiley & Sons; Chichester, UK: 2005.
Hydration of Ordinary Portland Cement in Presence of Lead Sorbed on Ceramic Sorbent