Automated alignment method for coherence-controlled holographic microscope

. 2015 Nov ; 20 (11) : 111215.

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30592593

A coherence-controlled holographic microscope (CCHM) was developed particularly for quantitative phase imaging and measurement of live cell dynamics, which is the proper subject of digital holographic microscopy (DHM). CCHM in low-coherence mode extends DHM in the study of living cells. However, this advantage is compensated by sensitivity of the system to easily become misaligned, which is a serious hindrance to wanted performance. Therefore, it became clear that introduction of a self-correcting system is inevitable. Accordingly, we had to devise a theory of a suitable control and design an automated alignment system for CCHM. The modulus of the reconstructed holographic signal was identified as a significant variable for guiding the alignment procedures. From this, we derived the original basic realignment three-dimensional algorithm, which encompasses a unique set of procedures for automated alignment that contains processes for initial and advanced alignment as well as long-term maintenance of microscope tuning. All of these procedures were applied to a functioning microscope and the tested processes were successfully validated. Finally, in such a way, CCHM is enabled to substantially contribute to study of biology, particularly of cancer cells in vitro.

Zobrazit více v PubMed

Kolman P., Chmelik R., “Coherence-controlled holographic microscope,” Opt. Express 18, 21990–22003 (2010).OPEXFF10.1364/OE.18.021990 PubMed DOI

Slaby T., et al. , “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21, 14747–14762 (2013).OPEXFF10.1364/OE.21.014747 PubMed DOI

Mir M., et al. , “Progress in optics,” in Quantitative Phase Imaging, Wolf E., Ed., pp. 133–217, Elsevier, Amsterdam: (2012).

Chmelik R., Harna Z., “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).10.1117/1.602217 DOI

Lostak M., et al. , “Diffuse light imaging with a coherence controlled holographic microscope,” Proc. SPIE 7746, 77461N (2010).PSISDG10.1117/12.882198 DOI

Lostak M., et al. , “Coherence-controlled holographic microscopy in diffuse media,” Opt. Express 22, 4180–4195 (2014).OPEXFF10.1364/OE.22.004180 PubMed DOI

Lovicar L., Komrska J., Chmelík R., “Quantitative-phase-contrast imaging of a two-level surface described as a 2D linear filtering process,” Opt. Express 18, 20585–20594 (2010).OPEXFF10.1364/OE.18.020585 PubMed DOI

Shaked N. T., et al. , “Quantitative analysis of biological cells using digital holographic microscopy,”in Holography, Research and Technologies, Rosen J., Ed., pp. 219–236, InTech, Rijeka: (2011).

Charrie F., et al. , “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).OPLEDP10.1364/OL.31.000178 PubMed DOI

Iwai H., et al. , “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29, 2399–2401 (2004).OPLEDP10.1364/OL.29.002399 PubMed DOI

Kalamatianos D., et al. , “Active alignment for two-beam interferometers,” Rev. Sci. Instrum. 77(1), 013103 (2006).RSINAK10.1063/1.2150823 DOI

Schwiesow R., “Stabilization mechanism for optical interferometer,” US Patent 4, 444, 501 (1984).

Krishnamachari V. V., et al. , “An active interferometer-stabilization scheme with linear phase control,” Opt. Express 14, 5210–5215 (2006).OPEXFF10.1364/OE.14.005210 PubMed DOI

Leith E. N., Upatnikes J., “Holography with achromatic-fringe systems,” J. Opt. Soc. Am. 57, 975–979 (1967).JOSAAH10.1364/JOSA.57.000975 DOI

Chmelik R., et al. , “Progress in optics,” in The Role of Coherence in Image Formation in Holographic Microscopy, Wolf E., Ed., pp. 133–217, Elsevier, Amsterdam: (2014).

Tyc M., et al. , “Numerical refocusing in digital holographic microscopy with extended-sources illumination,” Opt. Express 21, 28258–28271 (2013).OPEXFF10.1364/OE.21.028258 PubMed DOI

Collakova J., et al. , “Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion,” J. Biomed. Opt. 20(11), 111213 (2015).JBOPFO10.1117/1.JBO.20.11.111213 PubMed DOI

Goldstein R. M., Zebken H. A., Werner C. L., “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).RASCAD10.1029/RS023i004p00713 DOI

Ghiglia D. C., Pritt M. D., Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software, Wiley-Interscience, New York: (1998).

Goodman J. W., Introduction to Fourier Optics, 3rd ed., Roberts & Company, Greenwood Village: (2005).

Harris F., “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66, 51–83 (1978).IEEPAD10.1109/PROC.1978.10837 DOI

Chmelik R., et al. , “Interferometric system with variable optics for incoherent source of radiation,” Czech Republic Patent Application No. PV 2014-538 (2014).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...