Spectroscopic and Computational Evidence of Intramolecular AuI ⋅⋅⋅H+ -N Hydrogen Bonding
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
ERC-CoG-682275
H2020 European Research Council
17-10377S
Grantová Agentura České Republiky
17-07091S
Grantová Agentura České Republiky
PubMed
30600866
PubMed Central
PMC6519277
DOI
10.1002/anie.201811982
Knihovny.cz E-zdroje
- Klíčová slova
- anharmonic spectra, gold(I) carbenes, hydrogen bonding to gold, infrared photodissociation spectroscopy, quantum chemical calculations,
- Publikační typ
- časopisecké články MeSH
Despite substantial evidence of short Au⋅⋅⋅H-X contacts derived from a number of X-ray structures of AuI compounds, the nature of AuI ⋅⋅⋅H bonding in these systems has not been clearly understood. Herein, we present the first spectroscopic evidence for an intramolecular AuI ⋅⋅⋅H+ -N hydrogen bond in a [Cl-Au-L]+ complex, where L is a protonated N-heterocyclic carbene. The complex was isolated in the gas phase and characterized with helium-tagging infrared photodissociation (IRPD) spectra, in which H+ -N-mode-derived bands evidence the intramolecular AuI ⋅⋅⋅H+ -N bond. Quantum chemical calculations reproduce the experimental IRPD spectra and allow to characterize the intramolecular Au⋅⋅⋅H+ -N bonding with a short rAu⋅⋅⋅H distance of 2.17 Å and an interaction energy of approximately -10 kcal mol-1 . Various theoretical descriptors of chemical bonding calculated for the Au⋅⋅⋅H+ -N interaction provide strong evidence for a hydrogen bond of moderate strength.
Zobrazit více v PubMed
Marion N., Nolan S. P., Chem. Soc. Rev. 2008, 37, 1776–1782; PubMed
Roithová J., Janková Š., Jašíková L., Váňa J., Hybelbauerová S., Angew. Chem. Int. Ed. 2012, 51, 8378–8382; PubMed
Angew. Chem. 2012, 124, 8503–8507;
Asiri A. M., Hashmi A. S. K., Chem. Soc. Rev. 2016, 45, 4471–4503. PubMed
Kishimura A., Yamashita T., Aida T., J. Am. Chem. Soc. 2005, 127, 179–183. PubMed
Turek J., Růžičková Z., Tloušťová E., Mertlíková-Kaiserová H., Günterová J., Rulíšek L., Růžička A., Appl. Organomet. Chem. 2016, 30, 318–322.
Andris E., Andrikopoulos P. C., Schulz J., Turek J., Růžička A., Roithová J., Rulíšek L., J. Am. Chem. Soc. 2018, 140, 2316–2325. PubMed
Schmidbaur H., Raubenheimer H. G., Dobrzańska L., Chem. Soc. Rev. 2014, 43, 345–380. PubMed
Rekhroukh F., Estévez L., Bijani C., Miqueu K., Amgoune A., Bourissou D., Angew. Chem. Int. Ed. 2016, 55, 3414–3418; PubMed
Angew. Chem. 2016, 128, 3475–3479.
Koskinen L., Jaaskelainen S., Kalenius E., Hirva P., Haukka M., Cryst. Growth Des. 2014, 14, 1989–1997;
Groenewald F., Dillen J., Raubenheimer H. G., Esterhuysen C., Angew. Chem. Int. Ed. 2016, 55, 1694–1698; PubMed
Angew. Chem. 2016, 128, 1726–1730;
Groenewald F., Raubenheimer H. G., Dillen J., Esterhuysen C., Dalton Trans. 2017, 46, 4960–4967; PubMed
Berger R. J. F., Schoiber J., Monkowius U., Inorg. Chem. 2017, 56, 956–961. PubMed
Abu Bakar M., Sugiuchi M., Iwasaki M., Shichibu Y., Konishi K., Nat. Commun. 2017, 8, 576. PubMed PMC
J. Vícha, C. Foroutan-Nejad, M. Straka, submitted, preprint available at 10.26434/chemrxiv.7460714.v1. DOI
Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P., Kjaergaard H. G., Legon A. C., Mennucci B., Nesbitt D. J., Pure Appl. Chem. 2011, 83, 1637.
Craig S. M., Menges F. S., Duong C. H., Denton J. K., Madison L. R., McCoy A. B., Johnson M. A., Proc. Natl. Acad. Sci. USA 2017, 114, E4706–E4713. PubMed PMC
Foroutan-Nejad C., Shahbazian S., Marek R., Chem. Eur. J. 2014, 20, 10140–10152; PubMed
Nakanishi W., Hayashi S., Narahara K., J. Phys. Chem. A 2008, 112, 13593–13599. PubMed
Reed A. E., Curtiss L. A., Weinhold F., Chem. Rev. 1988, 88, 899–926.
Roithová J., Gray A., Andris E., Jašík J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230. PubMed
Jašík J., Žabka J., Roithová J., Gerlich D., Int. J. Mass Spectrom. 2013, 354–355, 204–210;
Jašík J., Gerlich D., Roithová J., J. Phys. Chem. A 2015, 119, 2532–2542. PubMed
Turek J., Panov I., Švec P., Růžičková Z., Růžička A., Dalton Trans. 2014, 43, 15465–15474. PubMed
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT, 2016.
Adamo C., Barone V., J. Chem. Phys. 1999, 110, 6158–6170.
Becke A. D., J. Chem. Phys. 1993, 98, 1372–1377;
Becke A. D., J. Chem. Phys. 1993, 98, 5648–5652;
Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37, 785. PubMed
Weigend F., Ahlrichs R., Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. PubMed
Andrae D., Häußermann U., Dolg M., Stoll H., Preuß H., Theor. Chim. Acta 1990, 77, 123–141.
Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104. PubMed
Vícha J., Straka M., Munzarova M. L., Marek R., J. Chem. Theory Comput. 2014, 10, 1489–1499; PubMed
Vícha J., Patzschke M., Marek R., Phys. Chem. Chem. Phys. 2013, 15, 7740–7754. PubMed
Grimme S., J. Chem. Phys. 2003, 118, 9095–9102.
Boys S. F., Bernardi F., Mol. Phys. 1970, 19, 553–566.
Grimme S., J. Comput. Chem. 2006, 27, 1787–1799. PubMed
Rodríguez J. I., J. Comput. Chem. 2013, 34, 681–686. PubMed
Van Lenthe E., Baerends E. J., J. Comput. Chem. 2003, 24, 1142–1156. PubMed
te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., van Gisbergen S. J. A., Snijders J. G., Ziegler T., J. Comput. Chem. 2001, 22, 931–967.
Note added in revision: Upon submitting the final version of this manuscript, a paper by M. Rigoulet, S. Massou, E. D. Sosa Carrizo, S. Mallet-Ladeira, A. Amgoune, K. Miqueu, D. Bourissou “Evidence for genuine hydrogen bonding in gold(I) complexes” was published in Proc. Natl. Acad. Sci. USA 2019. , 116, 46–51. The authors report evidence for very similar AuI⋅⋅⋅H+−N hydrogen bonding in cationic gold(I) complexes featuring ditopic phosphine-ammonium (P,NH+) ligands. The presence of Au⋅⋅⋅H−N hydrogen bonding was experimentally delineated by NMR, IR, and XRD and further assessed (and confirmed) computationally. PubMed PMC