Spectroscopic and Computational Evidence of Intramolecular AuI ⋅⋅⋅H+ -N Hydrogen Bonding

. 2019 Feb 11 ; 58 (7) : 2011-2016. [epub] 20190118

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30600866

Grantová podpora
ERC-CoG-682275 H2020 European Research Council
17-10377S Grantová Agentura České Republiky
17-07091S Grantová Agentura České Republiky

Despite substantial evidence of short Au⋅⋅⋅H-X contacts derived from a number of X-ray structures of AuI compounds, the nature of AuI ⋅⋅⋅H bonding in these systems has not been clearly understood. Herein, we present the first spectroscopic evidence for an intramolecular AuI ⋅⋅⋅H+ -N hydrogen bond in a [Cl-Au-L]+ complex, where L is a protonated N-heterocyclic carbene. The complex was isolated in the gas phase and characterized with helium-tagging infrared photodissociation (IRPD) spectra, in which H+ -N-mode-derived bands evidence the intramolecular AuI ⋅⋅⋅H+ -N bond. Quantum chemical calculations reproduce the experimental IRPD spectra and allow to characterize the intramolecular Au⋅⋅⋅H+ -N bonding with a short rAu⋅⋅⋅H distance of 2.17 Å and an interaction energy of approximately -10 kcal mol-1 . Various theoretical descriptors of chemical bonding calculated for the Au⋅⋅⋅H+ -N interaction provide strong evidence for a hydrogen bond of moderate strength.

Zobrazit více v PubMed

Marion N., Nolan S. P., Chem. Soc. Rev. 2008, 37, 1776–1782; PubMed

Roithová J., Janková Š., Jašíková L., Váňa J., Hybelbauerová S., Angew. Chem. Int. Ed. 2012, 51, 8378–8382; PubMed

Angew. Chem. 2012, 124, 8503–8507;

Asiri A. M., Hashmi A. S. K., Chem. Soc. Rev. 2016, 45, 4471–4503. PubMed

Kishimura A., Yamashita T., Aida T., J. Am. Chem. Soc. 2005, 127, 179–183. PubMed

Turek J., Růžičková Z., Tloušťová E., Mertlíková-Kaiserová H., Günterová J., Rulíšek L., Růžička A., Appl. Organomet. Chem. 2016, 30, 318–322.

Andris E., Andrikopoulos P. C., Schulz J., Turek J., Růžička A., Roithová J., Rulíšek L., J. Am. Chem. Soc. 2018, 140, 2316–2325. PubMed

Schmidbaur H., Raubenheimer H. G., Dobrzańska L., Chem. Soc. Rev. 2014, 43, 345–380. PubMed

Rekhroukh F., Estévez L., Bijani C., Miqueu K., Amgoune A., Bourissou D., Angew. Chem. Int. Ed. 2016, 55, 3414–3418; PubMed

Angew. Chem. 2016, 128, 3475–3479.

Koskinen L., Jaaskelainen S., Kalenius E., Hirva P., Haukka M., Cryst. Growth Des. 2014, 14, 1989–1997;

Groenewald F., Dillen J., Raubenheimer H. G., Esterhuysen C., Angew. Chem. Int. Ed. 2016, 55, 1694–1698; PubMed

Angew. Chem. 2016, 128, 1726–1730;

Groenewald F., Raubenheimer H. G., Dillen J., Esterhuysen C., Dalton Trans. 2017, 46, 4960–4967; PubMed

Berger R. J. F., Schoiber J., Monkowius U., Inorg. Chem. 2017, 56, 956–961. PubMed

Abu Bakar M., Sugiuchi M., Iwasaki M., Shichibu Y., Konishi K., Nat. Commun. 2017, 8, 576. PubMed PMC

J. Vícha, C. Foroutan-Nejad, M. Straka, submitted, preprint available at 10.26434/chemrxiv.7460714.v1. DOI

Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P., Kjaergaard H. G., Legon A. C., Mennucci B., Nesbitt D. J., Pure Appl. Chem. 2011, 83, 1637.

Craig S. M., Menges F. S., Duong C. H., Denton J. K., Madison L. R., McCoy A. B., Johnson M. A., Proc. Natl. Acad. Sci. USA 2017, 114, E4706–E4713. PubMed PMC

Foroutan-Nejad C., Shahbazian S., Marek R., Chem. Eur. J. 2014, 20, 10140–10152; PubMed

Nakanishi W., Hayashi S., Narahara K., J. Phys. Chem. A 2008, 112, 13593–13599. PubMed

Reed A. E., Curtiss L. A., Weinhold F., Chem. Rev. 1988, 88, 899–926.

Roithová J., Gray A., Andris E., Jašík J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230. PubMed

Jašík J., Žabka J., Roithová J., Gerlich D., Int. J. Mass Spectrom. 2013, 354–355, 204–210;

Jašík J., Gerlich D., Roithová J., J. Phys. Chem. A 2015, 119, 2532–2542. PubMed

Turek J., Panov I., Švec P., Růžičková Z., Růžička A., Dalton Trans. 2014, 43, 15465–15474. PubMed

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT, 2016.

Adamo C., Barone V., J. Chem. Phys. 1999, 110, 6158–6170.

Becke A. D., J. Chem. Phys. 1993, 98, 1372–1377;

Becke A. D., J. Chem. Phys. 1993, 98, 5648–5652;

Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37, 785. PubMed

Weigend F., Ahlrichs R., Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. PubMed

Andrae D., Häußermann U., Dolg M., Stoll H., Preuß H., Theor. Chim. Acta 1990, 77, 123–141.

Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104. PubMed

Vícha J., Straka M., Munzarova M. L., Marek R., J. Chem. Theory Comput. 2014, 10, 1489–1499; PubMed

Vícha J., Patzschke M., Marek R., Phys. Chem. Chem. Phys. 2013, 15, 7740–7754. PubMed

Grimme S., J. Chem. Phys. 2003, 118, 9095–9102.

Boys S. F., Bernardi F., Mol. Phys. 1970, 19, 553–566.

Grimme S., J. Comput. Chem. 2006, 27, 1787–1799. PubMed

Rodríguez J. I., J. Comput. Chem. 2013, 34, 681–686. PubMed

Van Lenthe E., Baerends E. J., J. Comput. Chem. 2003, 24, 1142–1156. PubMed

te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., van Gisbergen S. J. A., Snijders J. G., Ziegler T., J. Comput. Chem. 2001, 22, 931–967.

Note added in revision: Upon submitting the final version of this manuscript, a paper by M. Rigoulet, S. Massou, E. D. Sosa Carrizo, S. Mallet-Ladeira, A. Amgoune, K. Miqueu, D. Bourissou “Evidence for genuine hydrogen bonding in gold(I) complexes” was published in Proc. Natl. Acad. Sci. USA 2019. , 116, 46–51. The authors report evidence for very similar AuI⋅⋅⋅H+−N hydrogen bonding in cationic gold(I) complexes featuring ditopic phosphine-ammonium (P,NH+) ligands. The presence of Au⋅⋅⋅H−N hydrogen bonding was experimentally delineated by NMR, IR, and XRD and further assessed (and confirmed) computationally. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

1H NMR is not a proof of hydrogen bonds in transition metal complexes

. 2019 Apr 09 ; 10 (1) : 1643. [epub] 20190409

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...