• This record comes from PubMed

1H NMR is not a proof of hydrogen bonds in transition metal complexes

. 2019 Apr 09 ; 10 (1) : 1643. [epub] 20190409

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Letter, Research Support, Non-U.S. Gov't

Links

PubMed 30967536
PubMed Central PMC6456571
DOI 10.1038/s41467-019-09625-9
PII: 10.1038/s41467-019-09625-9
Knihovny.cz E-resources

See more in PubMed

Schmidbaur H, Raubenheimer HG, Dobrzańska L. The gold–hydrogen bond, Au–H, and the hydrogen bond to gold, Au⋯H–X. Chem. Soc. Rev. 2013;43:345–380. doi: 10.1039/C3CS60251F. PubMed DOI

Rigoulet M, et al. Evidence for genuine hydrogen bonding in gold(I) complexes. Proc. Natl. Acad. Sci. 2019;116:46–51. doi: 10.1073/pnas.1817194116. PubMed DOI PMC

Straka M, et al. Spectroscopic and computational evidence of intramolecular AuI⋅⋅⋅H+−N hydrogen bonding. Angew. Chem. 2019;131:2033–2038. doi: 10.1002/ange.201811982. PubMed DOI PMC

Bakar MA, Sugiuchi M, Iwasaki M, Shichibu Y, Konishi K. Hydrogen bonds to Au atoms in coordinated gold clusters. Nat. Commun. 2017;8:576. doi: 10.1038/s41467-017-00720-3. PubMed DOI PMC

Brookhart M, Green MLH, Parkin G. Agostic interactions in transition metal compounds. Proc. Natl. Acad. Sci. U. S. A. 2007;104:6908–6914. doi: 10.1073/pnas.0610747104. PubMed DOI PMC

Lein M. Characterization of agostic interactions in theory and computation. Coord. Chem. Rev. 2009;253:625–634. doi: 10.1016/j.ccr.2008.07.007. DOI

Vícha J, et al. Understanding the electronic factors responsible for ligand spin–orbit NMR shielding in transition-metal complexes. J. Chem. Theory. Comput. 2015;11:1509–1517. doi: 10.1021/ct501089z. PubMed DOI

Vícha J, Komorovsky S, Repisky M, Marek R, Straka M. Relativistic spin–orbit heavy atom on the light atom nmr chemical shifts: general trends across the periodic table explained. J. Chem. Theory. Comput. 2018;14:3025–3039. doi: 10.1021/acs.jctc.8b00144. PubMed DOI

Novotný J, et al. Linking the character of the metal–ligand bond to the ligand NMR shielding in transition-metal complexes: NMR contributions from spin–orbit coupling. J. Chem. Theory. Comput. 2017;13:3586–3601. doi: 10.1021/acs.jctc.7b00444. PubMed DOI

Wagner JP, Schreiner PR. London dispersion in molecular chemistry—reconsidering steric effects. Angew. Chem. Int. Ed. 2015;54:12274–12296. doi: 10.1002/anie.201503476. PubMed DOI

Foroutan-Nejad C, Shahbazian S, Marek R. Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths. Chem.—Eur. J. 2014;20:10140–10152. doi: 10.1002/chem.201402177. PubMed DOI

Nakanishi W, Hayashi S, Narahara K. Atoms-in-molecules dual parameter analysis of weak to strong interactions: behaviors of electronic energy densities versus laplacian of electron densities at bond critical points. J. Phys. Chem. A. 2008;112:13593–13599. doi: 10.1021/jp8054763. PubMed DOI

Mitoraj MP, Michalak A, Ziegler T. A combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory. Comput. 2009;5:962–975. doi: 10.1021/ct800503d. PubMed DOI

Ramsey NF. Magnetic shielding of nuclei in molecules. Phys. Rev. 1950;78:699–703. doi: 10.1103/PhysRev.78.699. DOI

Babinský M, Bouzková K, Pipíška M, Novosadová L, Marek R. Interpretation of crystal effects on NMR chemical shift tensors: electron and shielding deformation densities. J. Phys. Chem. A. 2013;117:497–503. doi: 10.1021/jp310967b. PubMed DOI

Vícha J, Marek R, Straka M. High-frequency 13C and 29Si NMR chemical shifts in diamagnetic low-valence compounds of TlI and PbII: decisive role of relativistic effects. Inorg. Chem. 2016;55:1770–1781. doi: 10.1021/acs.inorgchem.5b02689. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...