Retrograde and oscillatory shear increase across the menopause transition
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
K12 HD055882
NICHD NIH HHS - United States
K12 HD055882
NIH HHS - United States
M01 RR-10732
NIH HHS - United States
PubMed
30604931
PubMed Central
PMC6317059
DOI
10.14814/phy2.13965
Knihovny.cz E-zdroje
- Klíčová slova
- Menopause transition, oscillatory shear, retrograde shear,
- MeSH
- arterie diagnostické zobrazování fyziologie MeSH
- cévní endotel fyziologie MeSH
- dospělí MeSH
- estradiol krev MeSH
- folikuly stimulující hormon krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- luteinizační hormon krev MeSH
- menopauza krev fyziologie MeSH
- reologie krve * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- estradiol MeSH
- folikuly stimulující hormon MeSH
- luteinizační hormon MeSH
Declines in endothelial function can take place rapidly across the menopause transition, placing women at heightened risk for atherosclerosis. Disturbed patterns of conduit artery shear, characterized by greater oscillatory and retrograde shear, are associated with endothelial dysfunction but have yet to be described across menopause. Healthy women, who were not on hormone therapy or contraceptives, were classified into early perimenopausal, late perimenopausal, and early postmenopausal stage. Resting antegrade, retrograde, and oscillatory shear were calculated from blood velocity and diameter measured in the brachial and common femoral artery using Doppler ultrasound. Serum was collected for measurements of estradiol, follicle-stimulating hormone (FSH), and luteinizing hormone. After adjusting for age, brachial artery oscillatory shear was significantly higher in early postmenopausal women (n = 15, 0.17 ± 0.08 a.u.) than both early (n = 12, 0.08 ± 0.05 a.u., P < 0.05) and late (n = 8, 0.08 ± 0.04 a.u) perimenopausal women, and retrograde shear was significantly greater in early postmenopausal versus early perimenopausal women (-19.47 ± 12.97 vs. -9.62 ± 6.11 sec-1 , both P < 0.05). Femoral artery oscillatory and retrograde shear were greater, respectively, in early postmenopausal women (n = 15, 0.19 ± 0.08 a.u.; -13.57 ± 5.82 sec-1 ) than early perimenopausal women (n = 14, 0.11 ± 0.08 a.u.; -8.13 ± 4.43 sec-1 , P < 0.05). Further, Pearson correlation analyses revealed significant associations between FSH and both retrograde and oscillatory shear, respectively, in the brachial (r = -0.40, P = 0.03; r = 0.43, P = 0.02) and common femoral artery (r = -0.45, P = 0.01; r = 0.56, P = 0.001). These results suggest menopause, and its associated changes in reproductive hormones, adversely influences conduit arterial shear rate patterns to greater oscillatory and retrograde shear rates.
Department of Kinesiology Penn State University University Park Pennsylvania
Eastern New Mexico University Portales New Mexico
Penn State College of Medicine Hershey Pennsylvania
Penn State Harrisburg Middletown Pennsylvania
Zobrazit více v PubMed
Casey, D. P. , Padilla J., and Joyner M. J.. 2012. alpha‐adrenergic vasoconstriction contributes to the age‐related increase in conduit artery retrograde and oscillatory shear. Hypertension 60:1016–1022. 10.1161/hypertensionaha.112.200618 PubMed DOI PMC
Casey, D. P. , Schneider A. C., and Ueda K.. 2016. Influence of chronic endurance exercise training on conduit artery retrograde and oscillatory shear in older adults. Eur. J. Appl. Physiol. 116(10):1931–1940. 10.1007/s00421-016-3445-4. PubMed DOI PMC
Credeur, D. P. , Dobrosielski D. A., Arce‐Esquivel A. A., and Welsch M. A.. 2009. Brachial artery retrograde flow increases with age: relationship to physical function. Eur. J. Appl. Physiol. 107(2):219–225. 10.1007/s00421-009-1117-3. PubMed DOI PMC
Dinenno, F. A. , and Joyner M. J.. 2006. Alpha‐adrenergic control of skeletal muscle circulation at rest and during exercise in aging humans. Microcirculation 13:329–341. 10.1080/10739680600618843 PubMed DOI
Green, D. J. , Dawson E. A., Groenewoud H. M. M., Jones H., and Thijssen D. H. J.. 2014. Is flow‐mediated dilation nitric oxide mediated?: a meta‐analysis. Hypertension 63:376–382. 10.1161/hypertensionaha.113.02044 PubMed DOI
Hart, E. C. , Joyner M. J., Wallin B. G., and Charkoudian N.. 2012. Sex, ageing and resting blood pressure: gaining insights from the integrated balance of neural and haemodynamic factors. J. Physiol. 590(9):2069–2079. 10.1113/jphysiol.2011.224642. PubMed DOI PMC
Hashimoto, M. , Akishita M., Eto M., Ishikawa M., Kozaki K., Toba K., et al. 1995. Modulation of endothelium‐dependent flow‐mediated dilatation of the brachial artery by sex and menstrual cycle. Circulation 92:3431–3435. Retrieved from http://circ.ahajournals.org/content/92/12/3431.abstract PubMed
Helmlinger, G. , Berk B. C., and Nerem R. M.. 1995. Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ. Am. J. Physiol. 269(2 Pt 1):C367–C375. 10.1152/ajpcell.1995.269.2.C367. PubMed DOI
Inaba, Y. , Chen J. A., and Bergmann S. R.. 2010. Prediction of future cardiovascular outcomes by flow‐mediated vasodilatation of brachial artery: a meta‐analysis. Int. J. Cardiovasc. Imaging 26(6):631–640. 10.1007/s10554-010-9616-1. PubMed DOI
Kaminsky, L. A. , Arena R., and Myers J.. 2015. Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: data from the fitness registry and the importance of exercise national database. Mayo Clin. Proc. 90(11):1515–1523. 10.1016/j.mayocp.2015.07.026. PubMed DOI PMC
Li, X. , Chen W., Li P., Wei J., Cheng Y., Liu P., et al. 2017. Follicular stimulating hormone accelerates atherogenesis by increasing endothelial VCAM‐1 expression. Theranostics 7(19):4671–4688. 10.7150/thno.21216. PubMed DOI PMC
Malek, A. M. , Alper S. L., and Izumo S.. 1999. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042. PubMed
Matthews, K. A. , Crawford S. L., Chae C. U., Everson‐Rose S. A., Sowers M. F., Sternfeld B., et al. 2009. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J. Am. Coll. Cardiol. 54(25):2366–2373. 10.1016/j.jacc.2009.10.009. PubMed DOI PMC
Moreau, K. L. , and Hildreth K. L.. 2014. Vascular aging across the menopause transition in healthy women. Adv. Vasc. Med. 2014:e204390. 10.1155/2014/204390 PubMed DOI PMC
Moreau, K. L. , Hildreth K. L., Meditz A. L., Deane K. D., and Kohrt W. M.. 2012. Endothelial function is impaired across the stages of the menopause transition in healthy women. J. Clin. Endocrinol. Metab. 97(12):4692–4700. 10.1210/jc.2012-2244. PubMed DOI PMC
Novella, S. , Dantas A. P., Segarra G., Medina P., and Hermenegildo C.. 2012. Vascular aging in women: is estrogen the fountain of youth? Front. Physiol. 3:165 10.3389/fphys.2012.00165. PubMed DOI PMC
Padilla, J. , Young C. N., Simmons G. H., Deo S. H., Newcomer S. C., Sullivan J. P., et al. 2010. Increased muscle sympathetic nerve activity acutely alters conduit artery shear rate patterns. Am. J. Physiol. Heart Circ. Physiol. 298:H1128–H1135. 10.1152/ajpheart.01133.2009 PubMed DOI PMC
Padilla, J. , Simmons G. H., Fadel P. J., Laughlin M. H., Joyner M. J., and Casey D. P.. 2011. Impact of aging on conduit artery retrograde and oscillatory shear at rest and during exercise: role of nitric oxide. Hypertension 57:484–489. 10.1161/hypertensionaha.110.165365 PubMed DOI PMC
Parker, B. A. , Trehearn T. L., and Meendering J. R.. 2009. Pick your Poiseuille: normalizing the shear stimulus in studies of flow‐mediated dilation. J. Appl. Physiol. 107:1357–1359. 10.1152/japplphysiol.91302.2009 PubMed DOI
Scholten, R. R. , Spaanderman M. E. A., Green D. J., Hopman M. T. E., and Thijssen D. H. J.. 2014. Retrograde shear rate in formerly preeclamptic and healthy women before and after exercise training: relationship with endothelial function. Am. J. Physiol. Heart Circ. Physiol. 307:H418–H425. 10.1152/ajpheart.00128.2014 PubMed DOI
Seals, D. R. , Moreau K. L., Gates P. E., and Eskurza I.. 2006. Modulatory influences on ageing of the vasculature in healthy humans. Exp. Gerontol. 41(5):501–507. 10.1016/j.exger.2006.01.001. PubMed DOI
Shechter, M. , Shechter A., Koren‐Morag N., Feinberg M. S., and Hiersch L.. 2014. Usefulness of brachial artery flow‐mediated dilation to predict long‐term cardiovascular events in subjects without heart disease. Am. J. Cardiol. 113(1):162–167. 10.1016/j.amjcard.2013.08.051. PubMed DOI
Shenouda, N. , Priest S. E., Rizzuto V. I., and MacDonald M. J.. 2018. Brachial artery endothelial function is stable across a menstrual and oral contraceptive pill cycle, but lower in premenopausal women than age‐matched men. Am. J. Physiol. Heart Circ. Physiol. 315:H366–H374. 10.1152/ajpheart.00102.2018 PubMed DOI
Soules, M. R. , Sherman S., Parrott E., Rebar R., Santoro N., Utian W., et al. 2001. Stages of reproductive aging workshop (STRAW). J. Women's Health Gender‐Based Med. 4:267–272. . 10.1089/152460901753285732 PubMed DOI
Taddei, S. , Virdis A., Ghiadoni L., Salvetti G., Bernini G., Magagna A., et al. 2001. Age‐related reduction of NO availability and oxidative stress in humans. Hypertension 38:274–279. PubMed
Tanaka, H. , Monahan K. D., and Seals D. R.. 2001. Age‐predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 37(1):153–156. PubMed
Thijssen, D. H. J. , Dawson E. A., Tinken T. M., Cable N. T., and Green D. J.. 2009. Retrograde flow and shear rate acutely impair endothelial function in humans. Hypertension 53:986–992. 10.1161/hypertensionaha.109.131508 PubMed DOI
Traub, O. , and Berk B. C.. 1998. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18(5):677–685. PubMed
Williams, M. R. , Westerman R. A., Kingwell B. A., Paige J., Blombery P. A., Sudhir K., et al. 2001. Variations in endothelial function and arterial compliance during the menstrual cycle. J. Clin. Endocrinol. Metab. 86:5389–5395. PubMed
Woods, N. F. , Mitchell E. S., and Smith‐DiJulio K.. 2009. Cortisol levels during the menopausal transition and early postmenopause: observations from the seattle midlife women's health study. Menopause 16:708–718. 10.1097/gme.0b013e318198d6b2 PubMed DOI PMC
Young, C. N. , Deo S. H., Padilla J., Laughlin M. H., and Fadel P. J.. 2010. August). Pro‐atherogenic shear rate patterns in the femoral artery of healthy older adults. Atherosclerosis 211:390–392. 10.1016/j.atherosclerosis.2010.03.017 PubMed DOI PMC
Zhu, D. , Li X., Macrae V. E., Simoncini T., and Fu X.. 2018. Extragonadal effects of follicle‐stimulating hormone on osteoporosis and cardiovascular disease in women during menopausal transition. Trends Endocrinol. Metab. 29:571–580. 10.1016/j.tem.2018.06.001. PubMed DOI
Ziegler, T. , Bouzourene K., Harrison V. J., Brunner H. R., and Hayoz D.. 1998. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18:686–692. PubMed